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Abstract—In this paper, we describe the original problem
statement and the two winning solutions to the IEEE DySPAN
Challenge, organized in Baltimore in 2017. The idea of the
challenge was to invite teams to propose as diverse as possible
solutions to a well defined problem, and evaluate the performance
of the proposed solutions in a realistic environment. The challenge
is defined to enable benchmarking and comparison of multiple
teams, possibly working on different parts of the system, in a
real environment. The winning solutions represented a complete
and working system, working robustly and adapting to both
anticipated scenario changes, as well as random effects caused by
the conference setting. The code for running the challenge along
with the winning solutions is publicly available, so that interested
teams can start from the code when designing or benchmarking
solutions, as well as when setting up own challenges and competi-
tions. As a result, the challenge can serve as a milestone towards
the creation of a benchmarking series. This paper contains all
the necessary details about the software repositories so that it
becomes possible to rerun the challenge and start building novel
solutions based on the winners in IEEE DySPAN 2017.

Keywords—Spectrum challenge, Cognitive radio, Deep learning,
FBMC.

I. INTRODUCTION

Wireless data usage has increased tremendously over the
past few years. New spectral resources are allocated to meet
this ever increasing demand. These new allocations are limited
as the wireless spectrum is scarce. To enable efficient utiliza-
tion of this scarce resource, it is becoming crucial that wireless
radios share the available spectrum. Efficient sharing can be
enabled only when all the participating radios are well aware
of their operating wireless environment. Thus wireless situa-
tion awareness is unavoidable in modern radios for enabling
efficient spectrum sharing and reliable performance especially
in highly interfering scenarios. For instance, multiple self-
organized wireless networks can share the spectrum and work
independently without explicit coordination.

To comprehend the benefits of learning and adaptation
of wireless parameters and the importance of feedback in-
formation to facilitate this learning and adaptation, IEEE
DySPAN organized a spectrum challenge in 2015 [1]. During
this challenge it was concluded that the main challenges
in realizing such situational awareness include limitations in
observing the channel in a half duplex radio receiver, modeling
limitations of the non-stationary PU transmissions and the
inherent non-determinism of channel occupancy. Furthermore,
benchmarking the importance of situational awareness was
challenging mainly due to the versatility of the solutions.
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Fig. 1: Spectrum challenge setup: A real-time feedback from the database is
enabled along with score logging. Primary User (PU) and Secondary User
(SU) throughput and the spectrum usage is displayed by the visualization
module.

For the IEEE DySPAN spectrum challenge 20171, a generic
platform was developed to evaluate the state-of-the-art (SoA)
wireless algorithm performance in terms of radio situation
awareness and dynamic spectrum usage. First, a few fixed
scenarios are designed to benchmark the detection performance
of the SoA algorithms. Secondly, the algorithms’ dynamic
spectrum usage performance is tested and analyzed in these
scenarios. The complete challenge framework along with the
solutions is made public to the research community to enable
future benchmarks 2.

A high level overview of the IEEE DySPAN 2017 challenge
setup is given in Figure 1. The setup consists of two PU and
two SU radios which are connected to a central database server.
The rules of the challenge allowed each radio to use at most
two antennas. Real-time packets and performance metrics were
provided by the database. In addition, the database also logged
statistics about the system performance which is forwarded to
the visualization module for easy analysis during the course
of the challenge.

The rest of the paper is organized as follows. Section II

1http://dyspan2017.ieee-dyspan.org/spectrum-challenge
2https://github.com/networkedsystems/dyspanchallenge 2017
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Scenario Description Inter-packet delay
0 Single random channel 5 ms
1 Single random channel 10 ms
2 Two random channels, hopping 5 ms
3 Four random channels, hopping 10 ms
4 Four channels, synchronous 5 ms
5 Two random channels, synchronous 5 ms
6 Four channels, synchronous 2 ms
7 Four channels, Poisson-distributed delays 20 ms (mean)
8 Four channels, Poisson-distributed delays 10 ms (mean)
9 Four channels, Poisson-distributed delays 5 ms (mean)

TABLE I: Challenge scenarios: Different PU scenarios for the chal-
lenge. A visual representation of all the scenarios can be also found
in Figure 3.

defines the challenge setup and the winning parameters. The
winning solution for spectrum situation awareness is detailed
in section III. Section IV details the solution that performed
best in agile spectrum usage. Challenge results and conclusions
are presented in sections V and VII, respectively.

II. CHALLENGE PROBLEM DEFINITION

Some of the major criteria that were considered while
designing the challenge included enabling breadth in the
solutions in terms of hardware and software solutions and real-
time feedback about the PU and SU throughput statistics. To
comply with the criteria, an open GNU Radio based OFDM
stack was used in the physical layer and made available to the
participating teams for easy testing. Even though the PU design
was made public, the challenge scenario parameters were
randomized during the actual challenge. Challenge winning
metrics were selected to answer the following questions
• Situation awareness: How good is SoA research in de-

tecting wireless scenarios?
• Spectrum sharing: How well can the secondary users

exploit the spectrum, once they detect the scenarios?
• Receiver feedback: What is the upper bound in perfor-

mance that can be achieved if there is perfect PU and SU
receiver feedback?

The PU simultaneously transmitted on four predefined fre-
quency bands with a channel bandwidth of 2.5 MHz. The
secondary user had to transmit over the same 10 MHz band
which the PU was using. The spectrum usage was monitored
in real-time and all out-of-band transmissions were heavily
penalized. In order to avoid interferences from other wireless
devices, a dedicated band with a center frequency of 3195 MHz
was used during the challenge. More about the challenge setup,
phases and scores is detailed in the following subsections.

A. Challenge scenarios
Selecting realistic wireless spectrum occupancy scenarios

was important to benchmark the current capabilities of SoA
research. Detailed models could be found in literature cap-
turing the very nature of spectrum occupancies, in terms of
probability distributions, that can model the busy and idle
periods of real systems [2]–[5]. Various experimental studies
assuming a constant packet length and Poisson distributed

packet arrival times were conducted in [2]. Wireless traffic
analysis based on more realistic sources were done in [3]. In
most of these analyses the time spent on data transmission and
acknowledgement states were found to be deterministic, while
the idle periods were fitted to generalized Pareto distribution
or a mixture of uniform distributions. In [5] authors analyzed
the busy and idle periods with multiple wireless devices
operating in 2.4GHz ISM band. They concluded that hyper-
exponential distributions fits the busy and idle periods very
well while generalized Pareto distributions can provide good
approximations.

During the DySPAN spectrum challenge 2015 [1], it was no-
ticed that participants found it difficult to adapt their algorithms
to highly random scenarios. Furthermore, simple distributions
were preferred over complex ones to understand the baseline
performance of SoA algorithms as well as reduce the parameter
estimation overhead for participants. Acknowledging all these
factors, 10 scenarios were selected with varying levels of
difficulty. The scenarios ranged from the PU occupying a
single random channel with deterministic delay to independent
transmissions on all channels with random delays drawn from
a distribution as listed in Table I. The deterministic single
channel scenarios modeled realistic pilot transmissions in real
world wireless transmissions. For difficult scenarios, the inter-
packet delays were sampled from Poisson distributions under
the assumption that with a quite large number of users the
packet arrival event is uncorrelated holding the memoryless
property. A packet payload length of 64 bytes was selected and
the inter-packet period for each scenario is also listed in the
table. Including the header and CRC, the entire packet duration
was about 200 microseconds. The scenario switching time, the
time period in which the PU stays in a particular scenario, is
selected randomly from a uniform distribution between 15 and
30 seconds.

B. Primary User Setup

The PU radio used a four channel GNU Radio based
OFDM stack which was connected to a USRP X310 front-
end via Ethernet interface as shown in Figure 2. The packet
controller block was responsible for controlling the inter-
packet timing in the four channels for different scenarios. The
packet controller selects a particular scenario from the ones
shown in Table I, instructs the packet generator to request
required packets from the database and sends the packets to
the OFDM block for modulation. The modulated packets are
then split into four independent channels which are passed
to the channel combiner for further transmission over the air
using the USRP transmitter. The packet controller and channel
combiner together achieved the exact timing parameters for
each scenario by following a sample count based design. On
the receiver side the channel splitter splits the four channels
and distributes them to four independent OFDM receiver
blocks for demodulation. The demodulated packets are then
sent to the database server for validation.
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Fig. 2: Primary user setup

C. Database and Feedback
A central database server is implemented to provide PU and

SU performance feedback. The server delivers random packets
in requested number and size to the PU and SU transmitters.
Packets received at the receiver end are sent back to the
database where they are verified for correctness. The database
also logs the PU and SU throughput along with the situation
awareness status reported by the SU.

AES-128 is used in counter mode with a random key to
generate packets with strong randomness at high throughput.
The frames are sufficiently random thereby restricting further
compression before transmission. A secure message authenti-
cation code (MAC) is calculated over the frame to detect if it
has been corrupted. A sequence number is added to prevent
packets from being counted multiple times. AES along with
a secure MAC were used to prevent participating teams from
predicting future packets or generating their own packets at
the receiver end without transmitting over the air.

D. Challenge Phases
The challenge consisted of two phases: a situation awareness

phase and an agile spectrum usage phase as given below.
• Situation awareness
◦ SU should detect each scenario and report it to the

database

◦ PU feedback is provided to optimize the SU spectrum
usage and radio parameters. SU is not penalized for
interference which allows testing of spectrum sharing
algorithms along with scenario detection.

◦ Situation awareness score calculated in this phase

• Agile spectrum usage
◦ SU should share the spectrum for data transmission

◦ SU is penalized for interference

◦ Spectrum usage metric calculated in this phase
Each phase had a duration of 10 minutes. The SU radio could
learn about the environment, the PU transmission statistics and

the exact PU transmitter and receiver RF properties impacting
the interference sensitivity. This acquired knowledge could
then be used to calibrate the SU parameters and algorithms
to improve its performance.

E. Challenge metric
From the competing teams, two winners are selected, one

metric scores the teams in function of the throughput and
the other in function of their spectrum situation awareness.
The spectrum agility metric was represented by the product of
SU throughput (TSU) and PU satisfaction. The PU satisfaction
(SPU) was calculated from the offered PU throughput (T̂PU)
and the delivered PU throughput (TPU) as given in Equation 1.

Score = TSU × SPU

SPU = e
−10

( T̂PU − TPU

TPU

)
.

(1)

The situation awareness score is computed as the percentage
of time the SU had perfect situation awareness. The score is
calculated as given in Equation 2 where D̂ is the number of
1 millisecond time slots in which the SU radio has correct
situation awareness. The total number of slots D = 10× 60×
103.

Score =
D̂

D
(2)

III. WINNING SITUATIONAL AWARENESS APPROACH

A. Overview
The solution provided by Trinity College, Dublin (TCD) [6]

comprises the following components:
• frequency-hopping system capable of overlay operation
• transmitter and receiver with OFDM waveform
• deep learning chain for PU’s scenario classification
• energy detection for PU packet detection and positioning

in frequency and time
• continuous adaptation of SU’s frequency hopping pattern

based on sensing results
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• transmit power control for underlay operation, which
relies on the database feedback

This solution is implemented in C++, using standalone
libraries such as liquid-dsp for signal processing, and caffe
for deep learning. The solution source code3 and the samples
dataset4 used for training and testing the deep learning chain
along with the trained models are made public for future re-
search. The solution uses off-the-shelf USRP N210 hardware,
where the reception and sensing is done using omnidirectional
antennas, while the transmitter uses a directional waveguide
antenna made of an open-ended metal can, for increased SNR
and directionality.

This solution was built on top of TCD’s DySPAN challenge
2015 objective winner solution [7].

B. Situational Awareness Considerations
Energy detection-based sensing algorithms generally display

poor performances, when applied in the context of detection
of short duration signals in low SNR scenarios. The reason
behind this is that fast variations on the energy envelope of
signals can be easily mistaken for the impulsiveness of AWGN
[8]. This problem only gets exacerbated in real-world spectrum
sharing scenarios, where multiple users’ bursty transmissions
and leakage contribute to more unpredictable changes in the
energy envelope of an SU’s received samples. One possible
solution to overcome these issues is to use more advanced
cyclostationary detection techniques tuned for the detection
of specific PUs’ waveform features. However, the lack of
generality of these techniques is seen as impractical in many
scenarios where multiple incumbent radio access technologies
can operate in the same band.

TCD tackled both aforementioned issues by applying a
more innovative machine learning-based approach. Leveraging
recent breakthroughs in deep learning, TCD represented the
problem of PU scenario classification, as a computer vision
problem. This approach comprised two main stages: prepro-
cessing, where the received raw IQ samples were converted
to spectrogram images; and scenario classification, where
the generated spectrograms were classified into one of the
PU possible scenarios using a Convolutional Neural Network
(CNN).

With this work, TCD extended the application of ma-
chine learning algorithms beyond modulation recognition [9],
employing it in the identification of other PHY and MAC
parameters, such as channel bandwidth, packet length, and
inter-transmission delays.

1) Deep Learning for Scenario Classification
As shown in Table I, each PU’s scenario is characterized

by a unique set of characteristics. The traditional approach is
to build single purpose estimators to estimate each parameter
individually. Then, based on these estimates, the scenario is
inferred using a decision tree or look-up table. However, here
TCD introduced a strategy for recognizing the PU scenario that
does not require estimation of individual parameters. Instead,

3https://github.com/alvasMan/dyspan radio 2017
4http://dx.doi.org/10.7910/DVN/EBLENC

TCD trained a deep CNN model to perform the classification
directly from spectrograms. The fact that each PU scenario
has unique characteristics is reflected as a unique set of
spectrograms per class. Hence, the detection of PU scenarios
becomes an image classification task that can be solved with
CNNs. The choice of spectrograms for data representation was
mainly determined by the nature of the PU scenario recognition
task in the context of the challenge. The distinction between
scenarios requires precise information of both the received
signals’ frequency and timing. The spectrogram provides a
flexible tradeoff between time and frequency resolution, which
is not as simple to achieve if raw time-series or frequency
domain representations were utilized.

2) Training and Testing

Table II shows the number of collected spectrograms for all
classes. 80% of the collected data is used for training while
the rest (20%) is used to test the performance of the trained
model. The data for each scenario was collected with the PU-
Tx gain ranging from 0 to 30 dB. Such procedure is needed
to train the model to work properly at low and high SNR
values. To take into account different propagation conditions
as well as hardware impairments, the training and test samples
are collected at two different centre frequencies (2.3 and
3.195 GHz), with two different SBX daughter boards. For
perfect training, the TCD team manually checked all generated
spectrograms and removed any mislabeled data (often happens
at very low SNR) that may degrade the performance of our
model. Figure 3 shows few samples of our training dataset for
all PUs scenarios.

To build the CNN model, TCD started by training a CNN
architecture similar to [10] with input resolution 227x227. The
main drawback of this model is that it takes 0.2 seconds to clas-
sify one spectrogram on our machine (Intel Core i7-6820HK
Processor), which is not feasible to run in real time during
the competition. For that reason, TCD experimented with
other simpler configurations, using lower input dimensions
and fewer convolutional layer filters. For each configuration, a
CNN model is trained, its classification accuracy is tested, and
the CPU-feedforward time is calculated. After this process,
TCD reached the proposed architecture shown in Figure 4,
using gray-scale spectrograms with input size of 64×64, which
gives high classification accuracy and CPU-feedforward time
of 6 msec per spectrogram. At this point, TCD decided not
to further tune/optimize the model parameters, and focused on
data collection instead. Each horizontal line of the spectrogram
image represents the average power of 120 successive FFT
bins (0.768 ms), and each channel (2.5 MHz) is represented
with 16 bins (i.e. one spectrogram covers a duration of
0.768 × 64 = 49.2 ms and a bandwidth of 2.5 × 4 = 10
MHz). TCD concluded that a window of 49.2 ms is enough
to create distinctive sets of spectrograms for each scenario.
The CNN network consists of 5 convolutional layers equipped
with 48, 128, 192, 192, and 128 filters, respectively. Each
convolutional layer is accompanied by a rectified linear unit
(ReLU) and followed by a max-pooling layer. The output of
these convolutional layers is then passed through 3 fully con-
nected layers with 1024, 1024, and 10 neurons, respectively.

https://github.com/alvasMan/dyspan_radio_2017
http://dx.doi.org/10.7910/DVN/EBLENC
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TABLE II: Number of spectrogram images used per scenario

scenario training dataset testing dataset
0 8000 2000
1 8000 2000
2 18000 4500
3 3200 800
4 18000 4500
5 3200 800
6 3200 800
7 3200 800
8 3200 800
9 3200 800

Total 71200 17800

The last 10 neurons are fed to a softmax classifier to compute
the probability P (y = k|x; θ) for k ∈ {0, 1, .., 9}, where
x denotes the input spectrogram, and θ denotes our model
parameters.

The CNN model is trained on 71200 spectrograms and tested
on 17800 spectrograms (see Table II). The model is trained for
40K iterations, with batch size of 50. The training is performed
using the stochastic gradient descent algorithm in which the
weights of the network are updated after each iteration to
minimize classification errors. The learning rate starts with
α = 0.001 and is multiplied by γ = 0.1 every 10K iterations
(α is the weight of the negative gradient). The momentum
µ is set to 0.9 (µ is the weight of the previous update). L2
regularization is used with weight decay 0.0005 to prevent
over-fitting. Dropout was not used during the training process.
The model was trained using the Caffe framework [11] and a
current high-end GPU (Tesla K40c). After training, the model
was tested over 17800 spectrograms (test dataset) achieving
classification accuracy of 99.53%.

Figure 6 illustrates the performance of TCD’s CNN classifier
at various SNR levels for different PU scenarios. These results
were obtained using a dataset different than the one employed
for training and testing. As can be observed, the error rates
are quite low, in some cases, even at negative SNRs. These
results show that deep learning-based algorithms are reliable
solutions, despite not requiring prior noise calibration. It is
also possible to observe that the classification performance
varies with the PU scenario. In Figure 7, this phenomenon is
illustrated with higher detail by virtue of confusion matrices
at different SNR levels. The main reason behind the observed
behavior is the distinct transmission rates (i.e. number of
channels and inter-packet delays) utilized by the PU for each
scenario. As the SNR decreases, it becomes harder to distin-
guish PU’s packets from noise, and the classifier increases its
bias towards scenarios of low transmissions rates (e.g. 1 and
3). For SNRs below -5 dB, in particular, the classifier is not
able to detect transmissions and gets fully biased towards the
scenario 1, which makes sense as this scenario has the lowest
rates of transmissions. In Figure 7, it is also possible to observe
that scenario 6 is the most distinguishable for the classifier, as
a result of its low and unique inter-packet delay.

For the challenge, the model was used in CPU mode and it
took about 6 ms to execute one spectrogram. This means that
our model is able to detect the change in PU’s scenario with

a delay of ≈ 56 ms. However, to accommodate for hardware
impairments and inaccuracies, our decision for scenario change
used a majority vote of 5 successive spectrograms. This is
translated to a delay of 156 ms each time the PU changes
its scenario. During the DySPAN spectrum challenge, our
model achieved classification accuracy of 99.3%. Most of the
0.7% error was mainly due to delays associated with scenario
changes as each participant experienced 20+ changes during
the course of the challenge (i.e.≈ 80% of the error).

Despite being trained and tested in a single lab room, the
CNN model’s performance seemed unaffected by the distinct
geometry and size of the room where the challenge took place.
This suggests that the model is relatively robust to changes
in the multipath environment. The main reasons behind this
robustness are related to the nature of the challenge and
the choice of spectrograms for data representation. While
frequency selective fading can alter the shape of transmitted
signals, it has little impact on their position (time and fre-
quency) within the spectrogram image, which is more relevant
in the context of PU scenario recognition.

C. Agile SU Considerations

The solution provided by TCD for the second phase com-
prises a frequency-hopping SU that can continuously adjust
its hopping pattern and transmit power based both on the
captured sensing results and database feedback. To make this
solution flexible enough to accommodate a wide range of PU
SNRs, simultaneous in-band sensing and transmission was not
considered a viable approach. Instead, the SU transmits in one
single channel at a time, while sensing the remaining channels
to detect the presence of the PU and search for other free
channels to hop to.

During this phase of the challenge, TCD did not utilize
the spectrogram-based CNN model presented in Section III-B.
There were two main reasons behind this decision. The first
is that the number of possible states or scenarios the CNN
would need to be trained for in this phase is significantly
higher than in the previous one. This is due to the fact that
the SU’s activity, in particular, its hopping pattern and trans-
mit power, affect its the samples used for sensing. Training
the CNN model for all possible combinations would require
resources that were not available at the time. The second
reason is, the way it is designed, the CNN model only guesses
the current PU scenario, not providing information on the
Time of Arrivals (TOAs) and channel of PU’s packets that
is essential for frequency hopping. As an alternative to the
CNN approach, TCD designed an energy detector, capable of
assessing channel availability, and perform coarse PU scenario
estimation. Knowing the PU scenario is relevant for the SU to
know what frequency hopping strategy to employ as will be
explained below.

1) Channelizer

The input samples are converted to frequency domain
through a 64-size FFT block and magnitude squared to obtain
their power. The 64 FFT bin powers are grouped into 12
sections, each section defined by a channel index (1-4) and
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Fig. 3: Examples of training dataset for all PU’s scenarios. The ith row shows six spectrograms for the (i − 1)th scenario at different SNR
values.
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Fig. 4: Proposed CNN network architecture.
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Fig. 6: Error rate variation of the proposed CNN model with SNR.

whether it belongs to the PU’s useful, left guard, or right guard
band of the channel.

The bins within the same section are then averaged to obtain
a section’s estimated received power. These powers then enter
as input in the packet detector that will provide a list of the
available channels.

2) Packet Detection

As the PU’s transmission energy leaks to other channels,
employing simple energy detection may lead to very high false
alarm rates. For that reason, as a first stage, TCD’s packet
detector compensates the noise uncertainty in each channel by
dividing the useful band section powers by the average of the

powers obtained from the left and right guard band sections.
The end result is an array of 4 relative received powers, which
can be compared against a threshold to detect the arrival of a
packet. To avoid the detection of the SU’s own transmissions,
packets detected in the current SU’s channel were discarded.

3) TDoA Estimator
The packet detector outputs the packets’ TOA to the Time

Difference of Arrival (TDOA) estimator, which will then
compute the mean and standard deviation of the TDOA, also
known as the difference between consecutive packets’ TOAs.
The obtained means and deviations are then compared to those
of each scenario, previously stored in a look-up table. The end
result is a rough estimation of the PU’s scenario.

D. Transmit Chain
1) Frequency Hopping Controller
The SU follows two different hopping strategies based on

the current PU’s scenario. In the case of scenarios 1, 2, 3,
and 5 where only one or two channels are occupied by the
PU, the SU selects one of the empty channels for operation.
There is, however, one event this simple strategy does not
account for. As the SU is not able sense its own channel,
it may ambiguously classify scenario 5 as scenario 1, if it is
operating in one of the PU channels. To avoid this issue, a
maximum channel occupancy time of 500 ms was stipulated,
after which the SU has to hop to another empty channel.

For scenarios 4, 6, 7, 8, 9 and 10, the SU is set to hop
to the channel of the packet that was most recently detected.
This minimizes the likelihood of causing interference, as the
SU will mainly occupy the intervals between PUs’ packet
transmissions.
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Fig. 7: Confusion Matrices of the CNN model’s guesses at different SNR levels.
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2) Power Controller

In 6 of the 10 possible scenarios faced during the challenge,
all the 4 channels are occupied by the PU. As a frequency
hopping strategy may be not be sufficient to effectively avoid
causing interference in some of these cases, TCD also im-
plemented a power control mechanism that allows the SU to
operate underlay. To select an optimal transmit power, the SU
continuously queries the database for feedback on its and the
PU’s throughput and total score.

In particular, the transmitter will increase its transmit gain,
if it is observed that increasing the gain led to an increase
in the score in the last 500 ms. If this is not observed, the
transmitter will start decreasing the gain, until a decrease in
the overall score is observed. Besides these mechanisms, an
extra guard mechanism exists to quickly react to interference
caused to the PU. To do this, the SU monitors the percentage of
successfully received throughput by the PU, and if it is below
a pre-configured threshold of 90%, the SU quickly decreases
its transmit gain.

3) MCS Controller

To calibrate the modulation for the different gains used, in
an initial stage, the transmitter will continuously increase its
gain and look at the received throughput from the database
at various modulations. From these observations, the best
modulation for each transmit power will be saved into a table
and this table will then be referred to whenever the gain is
changed. This will ensure that the best possible modulation
order is used for each gain.

E. Future Directions

The TCD authors envision, as a possible future direction,
a closer integration between the CNN and the frequency
hopping system used in the first and second challenge stages,
respectively. Despite the overall superior performance of the
CNN at scenario classification in comparison to a traditional
packet detector, it was not evident how the CNN’s outputs
could be used for timing the SU’s transmissions. Performing
such task could be accomplished in two possible ways. One
would be to train a machine learning algorithm (e.g. CNN)
for the regression task of estimating the TOA and channel of
the PU’ detected packets. The estimated values would then be
used by the frequency hopping system to schedule its channel
transitions. The second alternative approach would be to em-
ploy reinforcement learning, in particular deep reinforcement
learning networks which based on the spectrogram images
assesses what are the best actions the SU can take at any instant
of time to avoid causing interference.

IV. WINNING AGILE SU APPROACH

A. Overview

The team from KIT presented a cognitive overlay system
based on a Filter Bank Multicarrier (FBMC) physical layer
(PHY) [12]. The solution is based on the system that was first
demonstrated in Stockholm at DySPAN 2015 [13]. In order to
demonstrate a competitive system for the challenge, however,
the PHY as well as the cognitive component were improved
in several respects.
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FBMC is a suitable choice for overlay systems due to its
high selectivity and high spectral efficiency. With respect to
the previous challenge, the synchronization and equalization
algorithms is adapted to reflect current state-of-the-art research.
More reliable synchronization and equalization also allows the
utilization of higher order modulation schemes and therefore
a higher achievable throughput.

To enable a cognitive SU behavior, a classification of the
PU scenario based on the extraction of multiple features of
the PU’s behavior is performed. This knowledge is then used
to predict transmission opportunities and thereby completely
avoids interference with the PU. Additionally, the current
scenario estimation is continuously validated in order to react
to unexpected changes in the environment in a timely manner.

For the implementation, the GNU Radio Software Defined
Radio (SDR) framework [14] was chosen due to its good
performance in real-time applications. The employed hardware
comprised two Universal Software Radio Peripheral (USRP)
B210 SDRs and two commercial off-the-shelf notebook com-
puters.

A block diagram of the setup is depicted in Fig. 9. The key
components as well as the challenges involved are discussed
in the following sections.

B. The FBMC PHY Layer
Fig. 10 shows that Filter Bank Multicarrier (FMBC) wave-

forms offer superior selectivity compared to OFDM since
every subcarrier is filtered with a long prototype filter. This
allows smaller guard bands to adjacent channels as well as an
improved spectral efficiency, while out-of-band radiation and
therefore interference with the PU is still considerably lower
[15].

Furthermore, an Orthogonal Quadrature Amplitude Mod-
ulation (OQAM) with a modulation order of up to 64 is
used, enabling only real data symbols to be transmitted. This
technique allows adjacent subcarriers to overlap in frequency
direction, since the quadrature component can be used to create
orthogonality by adding a phase shift of π

2 between them. This
method creates a chess pattern in the time-frequency plane
which can easily be reverted in the SU receiver. Interference
from surrounding symbols only affects the imaginary part
of each data symbol, which is discarded in the receiver.
The achievable data rate does not suffer in comparison to a
traditional QAM modulation because of the doubled subcarrier
density.

For the time synchronization in the SU receiver, a Zadoff-
Chu (ZC) preamble is inserted at the beginning of each
frame. In order to efficiently insert such a preamble into an
FBMC system, the approach in [16] was used, avoiding guard
symbols between preamble and payload and therefore reducing
overhead. Due to the zero-autocorrelation property of the ZC
sequence, the cross-correlation between the preamble sequence
and the receive signal exhibits a very sharp peak and therefore
enables a very accurate estimation of each frame start.

For fine frequency and phase synchronization as well as
channel tracking and equalization, scattered pilots are used in a
rectangular arrangement in the time/frequency plane, based on

the work of [17]. Since the pilot symbols, in contrast to the data
symbols, need to be complex in order to estimate a complex
channel transfer function, the imaginary component needs to
be kept free from interference. This is done by inserting
auxiliary pilots on the same subcarrier in the following symbol.
The expected interference on each pilot symbol is calculated
in the transmitter yielding the value for each corresponding
auxiliary pilot. A simple zero forcing approach is used in the
receiver to perform equalization after estimation and linear
interpolation of the channel transfer function with help of the
pilot symbols. The performance of the equalization is suffi-
cient to abdicate a more extensive frequency synchronization
with the employed hardware, which was equipped with GPS
disciplined oscillators (GPSDOs) in order to achieve local
oscillator frequency offsets smaller than the subcarrier spacing.
The existing frame structure, however, allows the estimation
of the integer frequency offset, if need be.

During development, an important focus was on the efficient
implementation of the signal processing algorithms in order
to facilitate the usage of standard consumer laptop computers
while being able to support wide bandwidths in real-time. To
this end, KIT used the Vector-Optimized Library of Kernels
(VOLK) , which provides fast implementations of common
mathematical operations in digital signal processing by lever-
aging the Single Instruction Multiple Data (SIMD) capability
of current processors [18].

For the challenge, the PHY layer was configured to use 53
of 64 subcarriers per subchannel, leaving DC and the outer
6 subcarriers empty to avoid adjacent channel interference.
Considering the employed 16-QAM modulation as well as
synchronization and tracking symbols and the inter-frame gaps
required for the classification, the maximum throughput of the
system in absence of the PU was about 13.8 Mbit/s.

C. Classification of PU behavior
In a first step, the energy in each of the 2.5 MHz wide

subchannels is detected by looking at the magnitude-squared
output of an N -point FFT. It must be noted that the choice
of N directly affects the delay but also the accuracy of the
estimation, so there is a trade-off to be considered. Practically,
a relatively short FFT with N = 512 points (i.e., 128 points
per subchannel) was used for the challenge.

In order to reduce the influence of out-of-band radiation
of neighboring channels and a possible DC offset, only the
N/2 bins in the center of each subchannel are integrated. The
binary decision whether the channel is occupied or not is then
made by comparing this energy estimate with a threshold. To
calculate the value for the threshold, the noise floor is estimated
continuously between the channels using a low-bandwidth
single-pole IIR filter. The detection threshold is then set to the
noise floor plus a fixed but user-configurable offset. During
the challenge, an offset of 7 dB provided a high detection rate
with only very sporadic false alarms. To enable this continuous
estimation even during SU transmissions, the high selectivity
of the FBMC PHY is crucial and would probably not be
possible in the same manner with an OFDM PHY.

At this point, it also showed that transmit amplifier non-
linearities impact the detection and classification performance
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Fig. 9: Block diagram of KIT’s solution for the SU transmitter and receiver.
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Fig. 10: Comparison between PSDs of OFDM and FBMC when
configured to use same number of subcarriers. It can be seen that
FBMC provides much higher out-of-band attenuation, facilitating a
reduction of the number of guard carriers.

severely. Due to the high power difference between PU and SU
packets, even seemingly negligible nonlinearities can lead to
interference in neighboring channels, causing false detections
as a result.

Based on the binary output of the Multichannel Energy
Detection block, three features are extracted: set of used
channels, average inter packet delay, and inter packet delay
variance. For convenient handling, so-called ”frame events”
are introduced to abstract from the continuous binary sequence
on each channel. To generate them, the PU Frame Detection

block looks for PU packets and, at the same time, SU packets
are filtered out based on their (different) length.

In order to minimize the probability of missed PU packets, a
conservative approach is employed that classifies any detected
signal that differs in length from a SU packet as a PU packet.

Every packet detection is then tagged with the channel
number it is detected in and a frame start time. Based on
this information, it is possible to calculate estimates for the
mentioned features by choosing a certain observation window.
The number of frame events in this window also represents an
important trade-off between classification delay and classifica-
tion accuracy. During the challenge, the observation window
based its decision on 50 consecutive frame events, which
amounts to a maximum delay of 500 ms in the second scenario,
where only one channel is used every 10 ms. In scenario 6,
however, with frames being sent only 2 ms apart on all four
subchannels, the classification delay is much smaller.

Finally, a decision tree is used to estimate the current PU
scenario. While traversing the tree, the channel occupation is
evaluated first, followed by the average inter packet delay and
the inter packet delay variance due to their increasing error-
proneness. Furthermore, consecutive and identical estimations
are used to increase a confidence value in order to reduce
the impact of single estimation errors. This confidence value,
even though being bounded, of course also has to be chosen
carefully as it affects the reaction time in case of a scenario
transition. Among the scenarios in Table I, scenario 4 and
9 showed the most potential for estimation errors because
they only differ in the variance of the inter packet delay.
Generally, the stochastic scenarios (7-9) require a relatively
long observation interval for the expectation and variance
estimations of the inter packet delay to converge sufficiently.

During the challenge, KIT’s classification algorithm proved
to be very robust, providing the correct classification results
for over 98% of the time. This probably could have been
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optimized by shortening the observation window as errors
only occurred in the transition period between two scenarios
when the observation window contained frames that followed
different patterns.

D. The Cognitive Allocator

The Cognitive Allocator represents the center of system,
where PHY, sensing and classification are combined to predict
and make use of transmission opportunities.

Basically, the estimated PU scenario provides the pattern
of PU transmissions, but the alignment of this pattern to the
current time has still to be done. To achieve this, the extracted
frame events are used. Based on the real-time information on
the PU frame arrival time, the characteristics of the current
scenario can be used to predict which time-frequency resources
can be used.

As soon as the time-frequency resources are allocated,
FBMC frames are assigned to them. Since FBMC is not
efficient for very short packets due to its long pulse shaping
filter and the Cognitive Allocator exactly knows how much
time can be safely allocated, the frame length is optimized
for a good overhead-to-payload ratio. In the challenge, every
frame carried aggregated 12 layer-2 packets from the database
with 64 bytes each, totalling 768 bytes of payload data and a
total length of about 1.7 milliseconds.

While the usage of unoccupied channels is straight-forward,
interweaving packets between PU transmissions is a more
challenging task. As the inter packet delay is on the order
of a few milliseconds for many scenarios, timing and delay
management is critical. In the end, the total delay between
sensing and transmission at the SU could be brought down
to 1 millisecond, which is sufficient as it allows the usage of
short inter packet gaps with a length of only 5 milliseconds.

In the stochastic scenarios, where the inter packet delays are
sampled from a Poisson distribution, the time occupied by the
SU frame is chosen such that the interference probability does
not exceed 5%.

This approach works well for a static scenario but can lead
to interference when the PU changes its behavior. To cope
with this, a conservative and a more aggressive mode were
implemented. In the aggressive mode, the Cognitive Allocator
completely relies on the accurate classification of the scenario,
which can lead to interference until the classification stabilizes
again. The conservative approach implements an ”override”
for the classification results, temporarily blacklisting channels
where PU frames have been registered that do not match the
current scenario. This of course comes at the cost of SU data
rate but can considerably reduce the interference, especially
when the PU changes its behavior frequently.

During the challenge, the first round was done in con-
servative mode, while the second round employed the more
aggressive mode. Fig. 11a indicates that, in the second round,
the increase in interference was negligible while the (success-
fully received) throughput of layer-2 data was considerably
improved, reaching about 12 Mbit/s and therefore almost the
theoretical maximum data rate in certain scenarios.

E. Implementation Aspects and Possible Improvements
Even though the solution works well in practice, there is still

room for improvement. The presented system does not make
use of multiple antennas for the transmit or receive process for
the sake of simplicity. Straight-forward improvements could
therefore include beamforming and combining techniques such
as Maximum Ratio Combining.

The main issue, however, that team KIT encountered during
design and testing is the delay caused by the various buffers of
GNU Radio, the USB connection, and the USRP. Shortening
the ”critical path” between receive and transmit antenna and
adapting operating system settings helps a lot but delays on
the order of a few microseconds still are not achievable.

One possible remedy besides the optimization of the dif-
ferent parameters discussed in the previous sections is the
implementation of critical features on the FPGA, e.g., by using
the RF Network on Chip (RFNoC) framework [19].

With very short delays, mechanisms could be implemented
that detect a PU OFDM frame while it is still in its cyclic prefix
and immediately shut down any ongoing SU transmissions,
therefore providing a high level of safety against interfer-
ence. FPGA implementations could also be used to offload
computation-heavy tasks as they are usually encountered in
synchronization and equalization algorithms.

V. CHALLENGE RESULTS AND DISCUSSION

Two runs of the challenge, each of 20 minutes with two
phases, were carried out to give the teams a second opportunity
to fine tune their algorithms. The winner for each of the two
phases was selected based on the best score out of the two runs.
The availability of the dedicated spectrum and reproducible
PU spectral occupancy pattern made the performance results
repeatable.

The final agile spectrum usage score is summarized in
Figure 11a. Team KIT achieved the highest spectrum usage
score during both runs with their advanced FBMC physical
layer and cognitive allocator. As shown in Figure 11b, team
Trinity achieved the highest situational awareness score of
99.31% using the non-linear deep learning model which had
rich internal state representations. Team FORTH also achieved
a good score of 99.04 during their second run. Team KIT’s
expert feature based classifier performed quite well with an
overall accuracy of 98.14% which turned out to be one of the
best solutions for both phases.

VI. FUTURE BENCHMARKING

This second IEEE DySPAN spectrum challenge was an
evolution of the first challenge organized at IEEE DySPAN
2015 [1]. To strengthen the benefits of learning and situational
awareness, it was decided to predefine specific patterns for
the PU. The PU in 2015 was too irregular and impossible to
predict. In addition, the PU PHY was replaced by an OFDM
PHY, instead of the IEEE 802.15.4 PHY used in the first
challenge. A part from these changes, the core logic and
setup of the challenge (implemented by a central database
that controls SU and PU packet flows) was reused. We made
the source code of the challenge core database, the metric
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Fig. 11: Final scores

and PU scenarios of the IEEE DySPAN challenge 2017, and
the two winning solutions as described in this paper public
through the github repository mentioned in the introduction
(footnote 2). Below, we describe two example scenarios for
future experiments building on the current results and code.

First, it is possible to rerun the challenge exactly as it was
defined, by testing both winning solutions in a specific and new
environment. While rerunning the winning solutions, it is also
possible to test a novel improved SU design, that can then then
benchmarked against the current best solutions. If a better score
is obtained, a new record can then be established. If the source
code of the new winner is made available, future solutions can
then again be benchmarked against the new winner as well.
As the source code for the challenge database, and the two
winners as described in this paper are shared in a joint github
repository, this avenue is already possible.

Alternatively, it is possible to start from the challenge core
database, and change the rules, metrics or PU characteristics.
By doing so, a new challenge is defined, emphasizing novel
research problems or aiming to steer research effort towards
a well defined problem. This requires somebody to take the
lead in reshaping the problem statement, and altering the
metric or database. By doing so, a new series of winners
can be established, targeting a slightly different version of
the challenge. We can compare this to the Guiness book of

records, where there are numerous winners, for numerous types
of world records.

While sharing the challenge source code, and the code for
the winner on GitHub, is a good starting point for organizing
such benchmarking series, we should realise that the perfor-
mance of each run is expected to differ a lot. Depending
on the size or the room, the level of interference, or the
exact hardware used to run the code, a different performance
is expected. To minimize the impact of the environment or
hardware on the performance, it would be better if there would
be a test facility where competing solutions could be tested,
continuously using the same environment and hardware. While
the establishment of such facility is at the moment future
work, it is for sure something the DySPAN community should
consider.

VII. CONCLUSIONS

For the second time, the DySPAN spectrum challenge
brought together researchers to demonstrate and compare their
solutions for cognitive SU systems in a scenario with a
highly dynamic, OFDM-based PU. The challenge offered an
opportunity for the exchange of experience, ideas, and visions
for the development of practical DSA systems.

The first phase of the challenge showed how recent advances
in the research on machine learning can be leveraged and
applied to a cognitive radio context. The team from Trinity
College, Dublin, achieved the highest situation awareness
score with over 99% classification accuracy by successfully
employing deep learning techniques to classify PU behavioral
patterns. Their classification approach was both highly accurate
and fast, which resulted in this near-perfect score.

In the second phase of the challenge, SU throughput and
PU interference were rated. The winning solution for this
task was presented by the team from the Karlsruhe Institute
of Technology. Their solution combined a spectrally efficient
FBMC waveform with the prediction of transmission oppor-
tunities through continuous classification of the PU, therefore
completely avoiding interference. By the effective use of the
available time-frequency resources, a peak throughput of about
12 Mbit/s was achieved.

Finally, we can say that the spectrum challenge showed
that the practical implementation of DSA systems is still
a challenging task. In order to create a lasting impact and
to enable reproducibility, the code for the PU as well as
the winning SU solutions were published online. This way,
new solutions can be benchmarked and compared with the
existing systems, possibly establishing a series of records and
continually improving the system’s design and algorithms.

In order to allow better control over the environment, future
spectrum challenges could also be held in a test facility,
providing exactly identical conditions for all participants. Al-
ternatively, the freely available code for the PU and database
server could be used to adapt the challenge to focus on
different problems encountered in the research on spectrum
sharing.
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