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Abstract—We study the interference and outage statistics in a
slotted Aloha ad hoc network, where the spatial distribution of
nodes is non-stationary and isotropic. In such a network, outage
probability and local throughput depend on both the particular
location in the network and the shape of the spatial distribution.
We derive in closed-form certain distributional properties of the
interference that are important for analyzing wireless networks
as a function of the location and the spatial shape. Our results
focus on path loss exponents 2 and 4, the former case not
being analyzable before due to the stationarity assumption of the
spatial node distribution. We propose two metrics for measuring
local throughput in non-stationary networks and discuss how our
findings can be applied to both analysis and optimization.

Index Terms—Ad hoc networks, interference, throughput

I. INTRODUCTION

The application of stochastic geometry to the modeling and

analysis of wireless networks has attained a lot of attention

in recent years. It has enabled a new framework called

transmission capacity (TC) framework, which led to many new

profound results in the topic of wireless networks (cf. [1], [2]).

The advantage of using a spatial model to describe the node

positions rather than assuming a deterministic network topol-

ogy is two-fold: First, such a probabilistic approach decouples

the performance analysis from the actual topology, thereby in-

creasing the generality of results. Second, it provides powerful

means for network optimization, especially for highly dynamic

networks, where interference is (unpredictably) fast-varying.

With few exceptions, the node positions are mostly modeled

as a stationary point process. Stationarity is a desirable prop-

erty, allowing analytically tractable computations and, even

more important, representing a key requirement for applying

the definition of TC. Even though the stationarity assumption

has not really narrowed the range of obtainable insights, it

poses some shortcomings to the analysis of wireless networks:

Infinite networks: Stationarity implies that the network is

infinitely large as opposed to real deployments with a finite

number of nodes.

No border effects: Border effects are inherently neglected in

infinite networks. However, border effects cause heterogeneity

in the nodes’ capabilities depending on their location, i.e.,

being dis-/connected, interference-/noise-limited, etc.

Infinite interference for free-space path loss: For stationary

node distributions in the plane and a path loss exponent α = 2,

the interference is infinite almost sure (a.s.) [1], resulting in

a TC of zero. More specifically, stationary models lose their

accuracy as the path loss exponent decreases due to the fact

that infinitely many nodes contribute to the interference.

Application of the TC: As already mentioned, the TC applies

only to stationary networks. When the node distribution is non-

stationary, this metric must be modified to take into account

heterogeneous node deployments.

In reality, wireless ad hoc networks always exhibit a het-

erogeneous node distribution. The most obvious example is

perhaps when the nodes are distributed in a bounded region.

In such a network, the interference situation near the center

will significantly differ from that at the border. Besides this

simple example, more complex deployments are often found

in practice, e.g., wireless sensor networks created by airdrop

[3], spontaneous formation of hot spots [4], etc.

A. Contribution

We extend the existing framework by relaxing the require-

ments on the node distribution, thereby allowing for isotropy

only. More specifically, we have the following results:

• The interference and outage statistics for slotted Aloha

with α = 2 and α = 4 are derived as a function of

the receiver position and the spatial shape of the node

distribution. We consider a path loss plus block fading

model. As for the outage statistics, we focus on Rayleigh

fading. We show how known results for the stationary

case arise from our results as special cases.

• Two global metrics, namely the differential TC and the

average sum throughput, that take into account heteroge-

neous node deployments are proposed. While the former

metric is a refinement of the TC, the latter quantifies the

first order overall network efficiency.

B. Related work

Stationary models with heterogeneous node deployment

have already been investigated. Specifically, Poisson-Cluster

[5] and Matérn hard-core models [6] have been studied, as

they are well-suited for analyzing more sophisticated medium

access control (MAC) schemes. Treated as general motion-

invariant, these and similar models were further analyzed in

[2], [7], [8] in a unifying way. In [9], a non-stationary and

isotropic node distribution was assumed for analyzing multi-

antenna receivers. While the analysis showed that the shape

of the spatial distribution has a considerable impact on link

performance, the scenario was limited only to the case of the

receiver located in the origin.



II. NETWORK MODEL

We consider a wireless ad hoc network with nodes isotrop-

ically distributed in R
2. The MAC employed by the nodes is

slotted Aloha. In a randomly chosen slot, some nodes wish to

transmit a packet. We assume that the set of transmitters {x}
follows an isotropic Poisson point process (PPP) Φt := {x}
on R

2 with intensity λ(x), where x ∈ R
2. Due to the isotropy

of Φt, λ(x) is rotation-invariant and depends only on the

Euclidean norm ‖x‖, i.e., λ(x) = λ(‖x‖ejφ) = λ(‖x‖),
φ ∈ [0, 2π). When working with polar coordinates, we

will use the notation λ(r), where r := ‖x‖. With [6], we

can describe λ(r) as the resulting intensity after distance-

dependent thinning of a stationary PPP of intensity λ, i.e.,

λ(r) := λF (r), (1)

where F (r) is called the shape function as it reflects the spatial

shape of Φt. We will pose the following restrictions on F (r):

(i) Positiveness: F (r) ≥ 0 for all r ≥ 0.

(ii) Normalization: maxr{F (r)} = 1.

The restrictions (i) and (ii) are necessary to ensure that λ(r)
is non-negative and bounded by λ everywhere.

We assume that each transmitter x has an intended receiver

y randomly located at fixed distance d. From the random

translation Theorem [6] it follows that the set of receivers {y}
forms an isotropic PPP Φr := {y} on R

2 with intensity λ(x)
as well. The fixed distance assumption is commonly accepted,

see [1]. However, we will relax this assumption in Section V.

We consider a path loss plus block fading channel with inde-

pendent and identically distributed (i.i.d.) fading coefficients.

The power path loss between two positions x, y ∈ R
2 is given

by ℓ(‖x − y‖) := (c + ‖x− y‖α)−1 with path loss exponent

α. The parameter c > 0 ensures boundedness of ℓ. The power

fading coefficient between a transmitter at x and a receiver at

y is given by gxy , where E [gxy] = 1 for all x, y ∈ R
2.

We further place a receiver at y0 ∈ R
2 and an intended

transmitter at an arbitrary position x0 ∈ R
2 with distance d

to y0. The pair x0 → y0 is called the reference pair as it will

allow us to measure the (spatially-averaged) link performance

for receivers at distance ‖y0‖ from the origin.

Assuming fixed power transmissions for all nodes, the

instantaneous signal-to-interference-plus-noise ratio (SINR) at

the reference receiver y0 is given by:

SINR(y0) :=
gx0y0

η + ℓ(d)−1I(y0)
, (2)

where η is the average noise-to-signal ratio and

I(y0) :=
∑

x∈Φt\{x0}
gxy0

ℓ(‖x− y0‖) (3)

is the interference power. We assume strong channel coding,

i.e., the outage event is a steep function of the SINR. The

outage probability (OP) at the reference pair x0 → y0 is then

given by the reduced Palm probability

q(y0) := P
!x0 (SINR(y0) < β) , (4)

where β is a modulation and coding specific SINR threshold.

III. INTERFERENCE ANALYSIS

We now study the interference statistics at the reference

receiver at y0. Before, we note the following two integral

identities which are taken from [10]:

Identity 1. If a > |b|, a, b ∈ R,

∫ π

0

dφ

(a+ b cosφ)n+1
=

π Pn

(

a√
a2−b2

)

(a2 − b2)
n+1

2

, (5)

where Pn(x) is the nth-Legendre polynomial.

Identity 2. Let a1, a2, a3 ∈ R, R := a1 + a2t
2 + a3t

4, ∆ =
4a1a3 − a22 and a3 > 0. Using substitution t → t2, we have

∫

2t
√
a3 dt√

a1 + a2t2 + a3t4
=















log 2
√
a3R+2a3t

2+a2√
∆

, a3 > 0

arcsinh2a3t
2+a2√
∆

, ∆ > 0

log(2a3t
2 + a2), ∆ = 0.

(6)

We are now in the position to derive the first moment of

the interference at y0.

Theorem 1. Let f(r) := dF (r)/dr, c > 0 and α = 2. If

lim
r→∞

F (r)rν < ∞ for some ν > 0, then

E
!x0 [I(y0)] = λA2(y0, c) < ∞, (7)

where the interference-driving function A2(y0, c) is given by

A2(y0, c) := F (0) arcsinh
y20 − c

2y0
√
c

+

∫ ∞

0

f(r) arcsinh
y20 − r2 − c

2y0
√
c

dr. (8)

Proof: We write

E
!x0 [I(y0)] = λ

∫

R2

E [gxy0
] ℓ(‖x− y0‖)F (x) dx

what follows from Campbell’s Theorem and Slivnyak’s The-

orem [11], and from the i.i.d. property of gxy0
. Applying

Identity 1 and 2 yields the result.

The function A2(y0, c) in (8) has an interesting interpreta-

tion: A2(y0, c) can be described as the interference field asso-

ciated with the origin o, from which the remaining interference

adds up differentially.

Corollary 1. Summary of some special cases of Theorem 1:

1) When we assume F (0) = 1 and f(r) ≤ 0 for all r ∈ R+,

F (r) can be interpreted as a complementary cumulative

distribution function (CDF) with respect to a random

distance r to the origin, yielding

A2(y0, c) = arcsinh
y20 − c

2y0
√
c
− E

[

arcsinh
y20 − r2 − c

2y0
√
c

]

.

2) Letting ‖y0‖ → 0, we further have

A2(0, c) = log(1/2c) + E [log(2(r + c))] .

3) Letting c → 0, we have E [I(y0)] = ∞, which is due to

the resulting singularity of ℓ(‖x−y0‖) at x = y0, cf. [2].



4) Sparse network (0 < limr→∞ F (r)rν < ∞, 0 < ν ≤ 2):

Remarkably,
∫∞
0

rF (r)dr = ∞ but E!x0 [I(y0)] < ∞.

5) Dense network (0 < limr→∞ F (r)rν < ∞, ν → 0): As

expected [2], E!x0 [I(y0)] = ∞.

1) has an interesting interpretation as well: The expectation

can be seen as averaging the differential interference over

r. Such an interpretation may be appropriate when analyzing

networks with a priori unknown or fast-varying spatial config-

urations, for which a CDF is then used to model their spatial

shape. 4) implies I(y0) < ∞ a.s. although infinitely many

nodes contribute to the interference on average. Note that 5)

includes the homogeneous case with F (r) = 1 (f(r) = 0).

We now extend the findings of Theorem 1. Before, we need

the following Lemma.

Lemma 1. Let a1, a2 ∈ R, a1 > 0. Then,
∫ ∫ π

0

2t dφdt

a1 + (t2 + a22 − 2ta2 cosφ)2

=
π

2
√
a1

arctan
2Re{κ(t, a1, a2)}
1− |κ(t, a1, a2)|2

, (9)

where

κ(t, a1, a2) :=
t2 − a22 − j

√
a1

√

(
√
a1 + j(t2 + a22))

2 + 4t2a22

. (10)

Proof: The basic idea is to decompose the integrand into

partial fractions and to apply Identity 1 and 2, yielding (9) after

some algebraic manipulations. Note that according to [10], (5)

and (6) hold only for real-valued parameters. However, they

were verified to hold also for complex-valued parameters.

Theorem 2. Let f(r) := dF (r)/dr, c > 0 and α = 4. Then,

E
!x0 [I(y0)] = λA4(y0, c) < ∞, (11)

where A4(y0, c) is given by (12) below.

Proof: The proof is analogous to the proof of Theorem 1

and uses the integral identity of Lemma 1. We further make

use of (ii) in Section II to show that limr→∞ F (r) < ∞.

Corollary 2. Summary of some special cases of Theorem 2:

1) Case c → 0: By taking the limit limc→0 A4(y0, c) in (12),

we observe that E!x0 [I(y0)] = ∞, cf. 3) in Corollary 2.

2) Homogeneous case: Let F (r) = 1. Then, f(r) = 0 and

lim
r→a

arctan
2Re{κ(r, c, y0)}
1− κ(r, c, y0)|2

=

{

−π
2 , a = 0

π
2 , a = ∞,

yielding E
!x0 [I(y0)] = λ π2

2
√
c

as expected, cf. [2].

All results of this Corollary are consistent with the literature.

The first moment of the interference is useful for bounding

the interference distribution for the path loss only scenario.

In case of Rayleigh fading channels, the Laplace transform

of I(y0), i.e., LI(y0)(s) := E [exp{−sI(y0)}], is of significant

importance, since it allows one to obtain the OP in closed-

form. When treating the case α = 2, we will always assume

that F (r) satisfies the additional condition of Theorem 1.

Theorem 3. For gxy ∼ Exp(1) for all x, y ∈ R
2 (Rayleigh

fading), the Laplace transform of I(y0) at y0 ∈ R
2 is

LI(y0)(s) = exp {−λsAα(y0, s+ c)} , (13)

for the cases α = 2 and α = 4, where A2(y0, c) is given by

(8) and A4(y0, c) is given by (12).

Proof: We write

LI(y0)(s)
(a)
= E

!x0

Φt

[

∏

x∈Φt

Egxy0
[exp {−sgxy0

ℓ(‖x− y0‖)}]
]

(b)
= exp

{

−
∫

R2

(1− Lg (sℓ(‖x− y0‖))) λ(x)dx
}

,

where (a) follows from algebraic manipulations and the i.i.d.

property of the gxy0
. (b) follows from the probability generat-

ing functional and the Laplace functional of a PPP [6]. After

noting that Lg(s) = (1 + s)−1 for g ∼ Exp(1), the integral is

computed using Identity 1 and 2, and Lemma 1.

Note that (a) in the proof holds for general point processes

and some approximation techniques for computing the right-

hand side already exist [12]. The (b) part is for PPPs only.

Corollary 3. Setting F (r) = 1 for all r ∈ R+ and c = 0, we

obtain the well-known result for the homogeneous case with

α = 4 [2]: LI(y0)(s) = exp{−λπ2

2

√
s}.

IV. OUTAGE AND LOCAL THROUGHPUT

A. Outage probability

We now study the OP for the reference pair x0 → y0. In

order to broadly discuss the impact of the spatial shape on

the performance, we focus on the Rayleigh fading scenario.

For other channel models, the interference moments derived

in Section III can be used to effectively bound the OP, e.g.,

using the Markov inequality [1]. We do not expect additional

insights by considering also other channel models.

Theorem 4. The OP for the Rayleigh fading scenario and α =
2 respectively α = 4 is given by

q(y0) = 1− LI(y0) (β(c+ dα)) exp {−βη} . (14)

Proof: It is well-known that the OP for Aloha MAC and

exponentially distributed power gains gxy can be written in

terms of the Laplace transform of the interference [2], [6]:

We condition (2) on Φ and evaluate the OP first with respect

to gx0y0
. We finally use (13) with s = β(c+ dα).

By means of (14) in Theorem 4 we can now measure the

OP for Rayleigh fading at an arbitrary location for an arbitrary

A4(y0, c) :=
π

2
√
c

(

F (r) arctan
2Re{κ(r, c, y0)}
1− |κ(r, c, y0)|2

∣

∣

∣

∣

∞

r=0

−
∫ ∞

0

f(r) arctan
2Re{κ(r, c, y0)}
1− |κ(r, c, y0)|2

dr

)

(12)



spatial shape function F (r) satisfying the given restrictions.

Fig. 1 shows q(‖y0‖) vs. ‖y0‖ for α = 2 and α = 4, thereby

confirming the analysis. It can further be observed how the

network “moves” from the interference-limited to the power-

limited regime with increasing ‖y0‖.

To highlight the accuracy of the model, we compare the OP

from Theorem 4 to a straightforward way of approximating

the OP which consists of assuming that the intensity λ(x) is

approximately constant around y0. In this case the OP can then

be described as in the homogeneous case [2], except for the

intensity in the exponential term being modulated by F (y0),
i.e., q̃(y0) := 1 − exp{−F (y0)λπ

2d2β
2
α

2
α
csc 2π

α
} ≈ q(y0).

We will now study the logarithmic ratio of exact to approxi-

mate success probability, i.e., γ := log 1−q(y0)
1−q̃(y0)

.

Corollary 4. Let c = 0. The ratio γ for α = 4 is given by

γ = λd2
√

β
(

π2

2 F (y0)− d2
√

βA4(y0, βd
4)
)

. (15)

Fig. 2 shows the ratio γ together with the shape function

F (r) for different receiver positions y0. F (r) was chosen such

that the network exhibits a communication hotspot, with the

density of active nodes slowly decaying between 70 and 500
until it becomes approximately zero. One can see that the

approximation is not satisfactory, especially in the transition

region, where border effects come into play.

B. Local throughput

We now propose two local throughout metrics that are

suitable for non-stationary wireless ad hoc networks.

Definition 1 (Differential transmission capacity (DTC)). The

DTC is defined as the maximal density of concurrent trans-

missions in an infinitesimal region around the point x ∈ R
2

subject to an OP constraint ǫ, i.e.,

c(x, ǫ) := λ(x, ǫ)(1 − ǫ). (16)

The TC and its differential counterpart have similar mean-

ing, except that the latter is position-dependent: For a given

spatial shape F (r) and target OP ǫ, c(x, ǫ) yields the TC in a

region dx. Hence, the DTC implicitly takes into account the

spatial shape of the node distribution. For Rayleigh fading,

c(x, ǫ) is obtained by solving (14) for λ. Like the TC, the DTC

can be used for comparing different transmission protocols.

Definition 2 (Average sum throughput (AST)). The AST is

defined as the ratio of average number of successful transmis-

sions to average number of simultaneous transmissions, i.e.,

Ω :=

E

[

∑

x∈Φt

1{x successful}
]

E

[

∑

x∈Φt

1{x∈R2}
] . (17)

The AST quantifies the first order overall efficiency of the

network on the MAC layer. While the DTC highlights the

spatial dynamics of the local throughput, the AST yields a

single figure of merit. In essence, the AST counts the num-

ber of successful transmissions, thereby integrating over the

spatial dynamics. Note that the success function 1{x successful},
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indicating that transmitter x has been successful, can be chosen

arbitrarily to include additional outage-inducing effects, e.g.,

energy-limitations, dis-connectivity or secrecy outage.

Theorem 5. Let limr→∞ F (r)rν < ∞ for some ν > 2.

With the underlying network model and success function

1{SINR(y)≥β}, the AST Ω can be computed as

Ω =

∫∞
0 r(1 − q(r))F (r) dr

∫∞
0 rF (r) dr

. (18)

Proof: Since the denominator directly follows from

Campbell’s Theorem, we focus on the numerator and write

E

[

∑

x∈Φt

1{x successful}

]

(a)
=

∫

R2

E
!x
[

1{x successful}
]

λ(x) dx

(b)
=

∫

R2

∫

R2

E
!x
Φt

[

1{SINR(y)≥β}
]

P (y = y|x) dy λ(x) dx

(c)
=

∫

R2

(
∫

R2

E
!x
Φt

[

1{SINR(y)≥β}
]

P (y = y|x) λ(x) dx
)

dy

(d)
=

∫

R2

(
∫

R2

P
!x
Φt
(SINR(y) ≥ β)P (y = y|x) λ(x) dx

)

dy

(e)
=

∫

R2

(1− q(y))

(
∫

R2

P (y = y|x) λ(x) dx
)

dy

=

∫

R2

(1 − q(y))λ(y) dy.

(a) is due to Campbell’s Theorem [11]. (b) is obtained by

noting that a transmitter x is successful if the intended receiver

at y is not in outage. From Section II, we know that y is placed

by random translation of x according to some probability



kernel P (y = y|x). (c) follows from Tonelli’s Theorem [13]

and (d) follows from E
[

1{X∈A}
]

= P (X ∈ A). (e) follows

from (14) and the fact that q(y) is independent of x.

V. APPLICATIONS OF THE MODEL

A. Shot-range inhibition

Besides slotted Aloha, other MAC protocols such as

CSMA/CA or local FDMA, are promising techniques for

reducing excessive interference generated by nodes within

shot-range. To study ad hoc networks with such inhibition

mechanisms while ensuring analytical tractability, powerful

methods based on non-homogeneous Poisson approximation

have been used [6], [14], [15]. When such protocols are

transmitter-initiated, e.g., transmitter sensing for CSMA or

transmitter orthogonalization for FDMA, the resulting spa-

tial distribution of interferers becomes inhomogeneous and

approximately isotropic around the transmitter x, while the

interference field at the intended receiver y will depend on

the distance ‖x − y‖. Hence, our model can be applied also

to such modeling problems and is not limited to Aloha MAC.

B. Network optimization

Consider the following situation: Let the set {y} of potential

receivers be distributed as an isotropic PPP Φr of intensity

λr(r) = λrF (r). Assume that Φt and Φr are independent. That

is, the set of all nodes follows a PPP, e.g., a sensor network

created by airdrop, and connectivity at distance d is no longer

guaranteed for every node. We further assume that the routing

protocol employs a nearest neighbor strategy, i.e., transmitters

aim at minimizing d. For points distributed as a PPP, the CDF

Fd(d) of the distance d between a point and its nearest neigh-

bor is well-known, see [6]. We would like to know the optimal

SINR threshold β such that the product log2(1+β)Ω(β) with

success function 1{x successful}1{x connected} is maximized. This

corresponds to maximizing the expected sum rate, i.e.,

β∗ = argmax
β

{log2(1 + β)Ω(β)}
(a)
≈ argmax

β

{

log2(1 + β)

∫ ∞

0

r

∫ ∞

0

(1− q(r, β, d))Fd(dd)dr

}

,

where we altered the notation Ω→Ω(β) and q(r)→ q(r, β, d)
to point out the functional dependencies. (a) follows from

E [q(‖yi‖)|xi = xi] ≈ q(‖xi‖),

which essentially approximates the interference field at a

receiver yi by the interference field at the associated trans-

mitter xi. This approximation is reasonable for high λr and/or

moderate slopes of F (r). Fig. 3 shows log2(1+β)Ω(β) vs. β.

As can be seen, optimizing over β yields large improvements.

VI. CONCLUDING REMARKS

We extended prior work on the modeling and analysis of

wireless networks by assuming an isotropic but not necessarily

stationary spatial distribution of nodes. We derived, for slotted

Aloha, the interference and outage statistics as a function

of the receiver position and the shape of the spatial node
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Fig. 3. log2(1 + β)Ω(β) vs. β for α = 2. η10 denotes η at a distance
d = 10. F (r) = exp{−r/250}. Marks represent simulation results.

distribution. The case α = 2, which could not be studied yet

due to the stationarity assumption, was intensively studied.

For α = 4, we also obtain closed-form results, from which

known results arise as special cases. We proposed two metrics

for measuring local throughput in non-stationary and finite

networks and discussed possible applications of our model.
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