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Increasing the One-Hop Progress of Nearest
Neighbor Forwarding

Ralph Tanbourgi, Holger Jäkel, Friedrich K. Jondral

Abstract—Nearest neighbor forwarding (NNF) intends to max-
imize throughput in wireless networks. However, NNF suffers
from low one-hop progress and may therefore significantly
increase end-to-end delay. The spatial efficiency (SE), i.e., the
expectation of the ratio of progress to interference area associated
with one hop, is introduced in order to quantify this trade-
off. The problem of low progress is addressed by maximizing
the one-hop SE, subject to the central angleγ, determining
the forwarding area. By this, the optimal balance between
minimizing the interference area and maximizing progress is
found. Then, this analysis is extended by considering a Poisson
point process, driven by some traffic intensity, on the interference
area. Furthermore, the traffic aware γ

∗-NNF strategy is proposed
which adapts γ to the traffic intensity in order to maximize SE.
Simulation results show a significant reduction of the end-to-end
delay if γ∗-NNF is used.

Index Terms—Wireless networks, greedy geographic routing,
Poisson point process.

I. I NTRODUCTION

W IRELESS networks have recently gained much at-
traction due to several reasons: research on hardware

has achieved considerable advances in the development of
small and inexpensive communications devices. A fundamen-
tal property of these networks is that communication does not
rely on a wired backbone. Hence, nodes additionally have to
function as routers by carrying the network traffic as well asto
organize and to maintain network topology. Certain aspectsof
routing must therefore be reviewed and new design paradigms
must be found in order to face emerging challenges such as
scalability and mobility.

A potential approach is greedy geographic forwarding
(GGF), which has gained much interest due to several reasons
(see [1]–[3]). In GGF, forwarding decisions are based on local
minimization of an Euclidean cost metric. This cost metric
can have various forms [2], depending on the strategy of
interest. In the GGF framework, nearest neighbor forwarding
(NNF) represents a strategy that minimizes spatial contention
and hence, maximizes throughput. In this scheme a packet is
forwarded to the node which has the least Euclidean distance
to the node currently holding the packet. By precondition, the
selected node (or relay) must give a positive progress to the
routing process, resulting in that only nodes located in a circle
sector with central angleγ=π are considered as potential
relays. This circle sector is called the forwarding area andis
indicated in Fig. 1(a).
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Fig. 1. Case I: All nodes that give positive progressZ are potential relays
(γ=π). Case II: Forwarding area is decreased (γ <π): Nearby nodes with
low progressZ are not considered as potential relays.

Although NNF maximizes throughput, it suffers from low
progress which may cause high end-to-end delay. This problem
can be tackled by narrowing the circle sector by means
of γ <π (Fig. 1(b)). Consequently, nearby nodes with low
progress are not considered as potential relays anymore. This,
of course, does not solve the problem, but decreases the
probability of low one-hop progress and improves end-to-end
delay. However, this modification results in more interference
and hence, lower throughput due to the increased transmission
power resulting from the increased one-hop distance.

We introduce the spatial efficiency (SE), which is defined
as the expectation over the ratio of progress to interference
area, in order to analyze this trade-off. Then, we determine
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the optimal central angleγ∗ such that the forwarding area
is chosen to maximize SE. In the second step, we refine
the definition of the SE by considering a Poisson point
process (PPP) on the interference area. Then, we propose the
traffic intensity awareγ∗-NNF strategy which adaptsγ to the
traffic intensity in order to maximize SE. Finally, we present
simulation results that reveal the significant reduction ofend-
to-end delay ifγ∗-NNF is used.

II. SPATIAL EFFICIENCY OFNNF

We assume that nodes are distributed in the plane according
to a stationary PPP. All nodes are equipped with omnidi-
rectional antennae. Furthermore, they do not have to obey a
transmission power constraint1.

Denote byR the transmission radius which is the Euclidean
distance between source and relay. Furthermore, denote byZ
the one-hop progress which is obtained by projectingR onto
a line connecting source and destination. Then, we define the
spatial efficiency (SE) as

η := E

{

Z

R2

}

, (1)

whereE{·} is the expectation operator. The quantityη mea-
sures the average one-hop progress normalized to the resulting
interference area. The motivation for choosing this metric
rather than, e.g.,E

{

Z
R

}

, is because it applies to the problem
of spatial contention and throughput. A key assumption is that
spatial contention is proportional toR2 or equivalently, that
throughput is inversely proportional toR2, which we consider
as the interference area associated with one hop. Since the
nodes have omnidirectional antennae, the interference area is
always a disc of radiusR.

We now calculateη for the NNF strategy forγ being
arbitrary but fixed. SinceZ and R are dependent, we first
decompose (1) by applying the law of total expectation,
according to

η = E

{

E{Z|R}
R2

}

. (2)

The probability density function (PDF) ofR is given by

fR(r) = λγre−λ γ

2
r2 , r ≥ 0, (3)

where λ is the node density of the PPP [4]. To calculate
E{Z|R}, we need the conditional PDFfZ|R(z|r). With the
uniformity of the PPP, we can obtainfZ|R(z|r) by simple
transformation of random variables, yielding

fZ|R(z|r) =
2

γ
√
r2 − z2

, r cos(γ/2) ≤ z ≤ r. (4)

With (4), the inner expectation in (2) can then be calculated
as

E{Z|R = r} =

r
∫

r cos(γ/2)

2z

γ
√
r2 − z2

dz =
2r

γ
sin(γ/2). (5)

1A constraint on transmission power would not give any additional insight
to the trade-off involved in this work. Furthermore, limiting the transmission
range would introduce connectivity issues to the model for fairness reasons.

Hence, (2) can be rewritten as

η = 2λ sin(γ/2)

∞
∫

0

e−λ γ

2
r2 dr =

√

2λπ

γ
sin(γ/2). (6)

We maximizeη by letting ∂η
∂γ

!
= 0 s.t. 0 < γ≤π, yielding

γ∗ cos(γ∗/2)− sin(γ∗/2)
!
= 0, ⇒ γ∗ ≈ 0.74 π. (7)

Note that the optimalγ∗ in (7) is independent of the node
densityλ.

III. POISSONPOINT PROCESS ANDSPATIAL EFFICIENCY

Now, we want to measure the SE in terms of the expected
ratio of progress to the number of conflicts, according to

ηI := E

{

Z

I + 1

}

, (8)

where I denotes the number of conflicts. The term conflict
refers to the problem of concurrent medium access in wireless
network and thus characterizes either the degree of interference
or the required number of orthogonal channels. We condition
the PPP on having a node in the origin and count the number
of conflicts this node experiences2. We further assume that
interference is formalized by the protocol model [6].

Then,I can be written as a PPP with intensity

ΛI = p

∫

R2

P
{

|x| ≤ (1+∆)R
}

λdx, (9)

where p is the thinning factor, which can be seen as the
network load and∆ denotes the guard zone around the receiver
in the protocol model. We now conditionΛI on the fact that
the transmission radius isR= r0. Thus, (9) can be rewritten
as

ΛI(r0) = p

∫

R2

1
(

|x| ≤ r0(1+∆)
)

λdx = πλβr20 , (10)

whereβ := p(1+∆)2 denotes the traffic intensity that drives
the PPP. Again, we apply the law of total expectation and
decompose (8), according to

ηI = E

{

E{Z|R}E
{ 1

I + 1

∣

∣

∣
R
}

}

. (11)

Note that conditioned onR, Z and I are independent. The
second term is calculated as

E

{ 1

I + 1

∣

∣

∣
R= r

}

=
1− e−πλβr2

πλβr2
. (12)

With (5) and (12), (11) can be calculated as

ηI =

√
2 sin(γ/2)

β
√
λπγ

(

1− 1
√

1 + 2βπ/γ

)

, (13)

which is a function ofβ andγ. We are now able to find the
optimalγ∗ in terms of SE for a given traffic intensityβ which
is the subject of the following section.

2Due to Slivnyak’s theorem [5], this does not affect the distribution of the
PPP.
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Fig. 2. Reduction of expected throughput and expected delaywith respect
to the caseγ=π vs. traffic intensityβ for different per-hop bias delaysα.

IV. T RAFFIC AWARE γ∗-NNF

We assume that nodes have side information about the
traffic intensityβ, i.e., nodes are aware of the network load
p and of the decoding requirements respectively the guard
zone∆. This can be achieved by, e.g., medium congestion
measurements [7]. With this knowledge, nodes can compute
the optimal central angleγ∗(β)= argmaxγ{ηI(γ, β)} from
(13). Unfortunately,γ∗(β) can not be obtained in closed-
form. Sincelimβ→∞ γ∗(β)= 0.74 π and by considering only
a network loadp> 0.15, i.e., interference-limited networks,
we can approximateγ∗(β) by curve fitting yielding

γ∗(β) ≃















0.14 π, 0 ≤ β < 0.15

−1.16β−1

3 + 2.64, 0.15 ≤ β ≤ 50

0.74 π, β ≥ 50.

(14)

We conducted Monte Carlo simulations to analyze the
resulting reduction in delay. In the scenario, nodes were i.i.d.
distributed with densityλ=10−3 in an area of1000× 1000
m2 and a source-destination pair was placed with distance
103 meters. We then measured the total delivery time of one
packet from source to destination. Thereby, in each hop the
number of concurrent medium accessI experienced by the
forwarding node was measured using the protocol model. The
per-hop delay was modeled as the sum of the waiting time in
terms of multiple time slots due to TDMA queueing, of signal
propagation duration and of a fictive bias per-hop delayα due
to signal processing tasks, i.e., per-hop delay isI +1+α time
slots. The simulations were conducted103 times for everyβ.

Fig. 2 shows the reduction of the expected end-to-end delay
and the expected throughput vs.β for γ= γ∗ (14). The solid
lines and the dashed lines are with respect to the numerical
maximization of (13) and the approximation from (14). It can
be seen that the expected end-to-end delay can be reduced
significantly in the low traffic regime (30-70%). In the high
traffic regime, the reduction of the expected end-to-end delay
is approximately 10%. Since the cost of reducing delay is
an increase in interference area, we observe a reduction of
the expected throughput (20-35%) over the whole range of
β. Furthermore, the approximation error when using (14) is
marginal as observed in Fig. 2.

Fig. 3 shows the delay ratio and the throughput ratio for
different non-optimalγ with respect to usingγ∗ vs. β. In this
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Fig. 3. Delay ratio and throughput ratio for non-optimalγ with respect to
γ∗ vs. traffic intensityβ for a per-hop bias delayα=5.

scenario,γ∗ was computed numerically. It can be observed
that using a staticγ results in a unstable delay-throughput
trade-off: depending on the value ofγ, either delay increases
in the low traffic regime or throughput decreases in the high
traffic regime compared to the optimalγ∗ case.

V. CONCLUSION

We addressed the problem of low progress of NNF, which
may result in high end-to-end delay in wireless networks.
We formulated the spatial efficiency as the expectation of
the ratio of progress to interference area. By maximizing
the spatial efficiency we obtained the optimal central angle
γ∗=0.74 π, which finds the optimal trade-off between high
progress and low spatial contention. We extended this analysis
by considering a Poisson point process, driven by some traffic
intensity, on the interference area associated with one hop. The
protocol model was chosen as an example for interference
characterization but can be replaced by other models. We
proposed a new traffic aware forwarding scheme calledγ∗-
NNF which adapts its forwarding strategy to maximize the
spatial efficiency for a given traffic intensity. In terms of
end-to-end delay and throughput, our results show significant
improvements compared to conventional NNF. Simulation
results show that in this case, end-to-end delay can be re-
duced significantly (10-75%), while throughput decreases only
marginally (20-35%).
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