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Abstract—This paper studies the performance of ad hoc
networks with local FDMA scheduling using stochastic point
processes. In such networks, the Poisson assumption is not
justified due to interdependencies between points introduced by
scheduling. For this reason, an upper bound on the second
reduced moment measure is derived. Using this result, two
lower bounds on the success probability are given, based on the
second order product density and a non-homogeneous Poisson
approximation. The relative performance of local FDMA is
compared to random channel access. It is shown that the relative
outage probability reduction of local FDMA highly depends on
the SIR threshold as well as on the ratio of transmission distance
to orthogonalization distance. If these two quantities are small,
the improvement is high; the number of channels has only a
minor effect on the relative improvement.

I. INTRODUCTION

The fundamental limits of general wireless networks in

terms of capacity are not fully understood yet and extensive

research in this area is still ongoing. A well-accepted opinion,

however, is that co-channel interference is the performance-

limiting factor in (dense) wireless networks [1], [2]. In order

to properly capture the impact of the uncertainty in the spatial

configuration on the performance of the network, tools from

stochastic geometry, most notably the theory of Poisson point

processes, have been successfully applied to uncoordinated

wireless networks (see [3], [4]).

The investigation of wireless networks employing coordi-

nated medium access to yield better medium utilization in this

framework is challenging, since the Poisson assumption is no

longer justified. Recent works study the effect of transmitter

clustering [5] and carrier sense multiple access (CSMA) [4].

The work on CSMA has been extended by taking into account

performance guarantees [6] and nodes with cognitive abilities

[7].

Another promising approach for achieving coordination

among the nodes is local FDMA scheduling. Here, a wireless

multi-channel network is considered, in which the nodes are

able to locally coordinate their channel assignments. The

benefits of local scheduling have been studied in [8], [9]

for different types of scheduling. In [8], the success prob-

ability and transmission capacity of a local FDMA based

ad hoc network was analyzed for the path loss model. In

particular, the question of network wide orthogonalization

has been addressed. Nearest neighbor FDMA scheduling has

been studied in [9], where it was assumed that the number

of orthogonal channels is sufficiently large such that every

receiver can orthogonalize its nearest interferer. In these two

works, results have been derived and validated by simulations

without characterizing the resulting point process in detail.

It is straightforward to see that the underlying point pro-

cess of such scheduled networks is not Poisson, since the

scheduling component creates interdependencies between the

nodes. Unfortunately, the moment-generating functional for

non-Poisson point processes are not known in closed form

and one has to resort to approximations. For instance, in [4]

the success probability for CSMA is derived by approximating

the characteristics of the underlying Matern hard-core process

by a non-homogeneous Poisson point process. Another way of

calculating the success probability and transmission capacity

was suggested in [10], where the key idea is to use product

densities, which are known for several point processes.

This work aims at investigating the interference situation

in a wireless ad hoc network, in which nodes are capable of

jointly and locally orthogonalizing their transmission sched-

ules using orthogonal channels. We derive an upper bound on

the second reduced moment measure and the second order

product density. These results are then used to bound the

success probability of the scheduled network in order to show

the gain of local FDMA scheduling. In particular, we analyze

the relative improvement of FDMA compared to unscheduled

random channel access in terms of outage probability for low

node intensities.

II. SYSTEM MODEL

A. Network Geometry

Let {Xi} be the set of transmitters which are uniformly

and independently distributed in the plane R
2 according to a

stationary Poisson point process (PPP) Φ. The intensity of Φ
is given by λ. We define Φ as a random set, i.e.,

Φ(A) , {Xi|Xi ∈ A}, A ⊆ R
2. (1)

Each transmitter Xi has an intended receiver Xrx
i randomly

situated at most r units away, where the actual positions of

the X rx
i are uniformly distributed within b(Xi, r). The set of

receivers {Xrx
i } forms another stationary PPP denoted by Φrx.

Slivnyak’s Theorem [11] states that the distribution of Φ is

not changed by the addition of a point (without counting it).

Consequently, we can place a reference1 receiver Xrx
0 in the

1We index all reference quantities by ”0”. Consequently, i ∈ N+ for both
Φ and Φrx.



origin and a reference transmitter X0 separated by d0 units,

where d0 ≤ r. The interference situation will be considered

from the viewpoint of Xrx
0 .

We assume that the total available bandwidth is equally split

into M orthogonal channels m ∈ M = {1, . . .M}. At the time

of medium access, each pair Xi, X
rx
i (including the reference

pair) has chosen a certain channel mi. Hence, we can consider

the collection of tuples {(Xi, mi)} (and also {(Xrx
i , mi)})

defined on the Cartesian product R
2×M and define the marked

point process Φ̃ (and Φ̃rx) as

Φ̃(A×B)= {(Xi, mi) |Xi ∈ A, mi ∈ B}, A ⊆ R
2, B ⊆ M .

(2)

We denote by m0 the reference mark, i.e., the mark associated

with the reference pair X0, X
rx
0 .

B. Local FDMA Scheduling

Local FDMA scheduling aims at coordinating channel

access among co-located nodes in order to avoid excessive

co-channel interference. Similarly as in CSMA/CA where a

ready-to-send/clear-to-send (RTS/CTS) exchange is necessary

prior to transmission, local FDMA scheduling requires a con-

tention resolution period in which the channels are allocated

through local signaling, e.g., by sending beacon signals to

indicate the chosen channel. During this contention resolution

period, co-located nodes jointly assign their channels in such

a way that no receiver X rx
i has an interferer Xj within

its proximity transmitting in the same channel. Proximity is

defined in the Euclidean sense by a disc b(x, r) of radius r
around a point x.

We use the concept of conflict graphs to formalize the

scheduling problem. A transmission pair, indicated by the tuple

(Xi, X
rx
i ) is said to be in conflict with another pair (Xj , X

rx
j ),

if either Xi ∈ b(X rx
j , r) or Xj ∈ b(X rx

i , r). Considering the tu-

ples (Xi, X
rx
i ) as vertices, a conflict graph can be constructed

with edges connecting those pairs creating a conflict to each

other. We denote by Ci the set of conflicting nodes associated

with the transmission pair (Xi, X
rx
i ), i.e.,

Ci = Φ (b(X rx
i , r)) \ Xi

∪
{
X rx

j ∈ Φrx (b(Xi, r)) |Xj /∈ b(X rx
i , r)

}
, (3)

Note that the additional property Xj /∈ b(X rx
i , r) in the second

set avoids counting conflicts twice.

From the theorem of Brooks [12] it follows that every

graph can be colored properly2 with at most maxi{|Ci|} + 1
colors, where |Ci| is the cardinality of Ci. Unfortunately,

in our network model, there is a non-zero probability of

an unbounded vertex degree due to the fact that infinitely

many points may be close to each other. Hence, we cannot

determine the minimum number of colors required for proper

coloring. Furthermore, in practice the number of channels is

typically given by the system design constraints (e.g., spectrum

regulation, hardware complexity, desired data rate). As a result,

the dependently marked point process Φ̃ may not fulfill the

2A coloring is proper if no two vertices connected by an edge have the
same color.

scheduling policy at all nodes due to an insufficient number

of channels (non-proper coloring).

In the following, we consider Φ̃ (and Φ̃rx) at the time

the scheduling task has terminated.3 Furthermore, only the

transmitters with marks equal to the reference mark m0 will be

considered, since only these will contribute to the aggregated

interference. The collection of these interferers is denoted by

Φ̃0, i.e.,

Φ̃0(A) , Φ̃(A×m0) = {(Xi, mi) |Xi ∈ A, mi = m0}, (4)

which is not Poisson but stationary [4]. The intensity of Φ̃0 is

equal to λ
M due to symmetry reasons, i.e., no specific channel

is preferred by the scheduling algorithm.

III. SECOND REDUCED MOMENT MEASURE OF Φ̃0

The second reduced moment measure K2 of a point process

is defined as

K2(b(0, t)) =
M

λ
E

!o

{
∑

i

1{Xi∈Φ̃0(b(0,t))}

}

. (5)

This means we count the number of points from Φ̃0 that

fall into b(0, t) without counting the reference point in the

origin and normalize this quantity by the intensity λ/M .

In the isotropic case, (5) can be written in terms of the

second reduced moment function K(t) = K2(b(0, t)). We now

propose an upper bound on K(t) which will be used for the

analysis of the success probability later on.

A. Upper Bound on the Second Reduced Moment Measure

Theorem 1. The expected number of interferers within a disc

of radius t around a receiver Xrx
0 located in the origin, given

a stationary point process Φ̃ with marks assigned according

to the scheduling policy of (3), is upper bounded by

λ

M
K(t) = E

!o

{
∑

i

1{Xi∈Φ̃0(b(0,t))}

}

≤
λ

M
Ku(t) =

{

∆t2, t ≤ r

min{∆r2 + λπ(t2−r2), λ
M πt2}, t > r,

(6)

where

∆ =
e−(2λπr2−ζ)

2Mr2

∞∑

k=M

(k−M +1) (λπr2)k
k∑

ℓ=0

(1 − ζ
λπr2 )k−ℓ

ℓ!(k − ℓ)!

and

ζ =
2λ

πr2

∫ r+d

0

z Ω(z)
[

2r2 arccos
( z

2r

)

−
z

2

√

4r2 − z2
]

dz,

where

Ω(z) =







π, 0 ≤ r ≤ r − d

arccos

(
r2 − d2 − z2

−2dz

)

, r − d < z ≤ r + d.

Proof: The proof is given in appendix A.

3Either by having found a proper coloring or by aborting after a predefined
number of iterations.
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Fig. 1. The simulated K(t) and the corresponding upper bound Ku with
parameters λ = 10−2, M = 5, d = 7 and r = 10.

Fig. 1 shows the upper bound Ku(t) together with the sim-

ulated K(t) and the homogeneous Poisson case πt2. We have

used a decentralized stochastic coloring algorithm, namely

the communication-free learning (CFL) algorithm from [13],

for implementing the scheduling policy. One can observe that

K(t) increases very slowly until the scheduling range t = r is

reached. The bound Ku(t) performs well in the region t≤ r.

For sufficiently large M , the slope of K(t) tends to zero in

this region and Φ̃0 becomes comparable to a hard-core point

process.

B. Upper Bound on the Second Order Product Density

From [11], we have the following relation

ρ(2)(t) =
λ2

2πtM2

∂K(t)

∂t
, (7)

where ρ(2)(t) is the second order product density of a station-

ary point process (on R
2) with intensity λ/M .

We would like to know if the upper bound Ku(t) from

(6) results in an upper bound on ρ(2) after differentiation.

We first analyze the case t ≤ r: It is reasonable to assume

that the location of a non-scheduled interferer is uniformly

distributed within b(0, r) since there is no reason for a spatial

orientation of non-scheduled interferers. Consequently, the

derivate of K(t) grows linearly. Since Ku(0) = K(0) = 0
and Ku(t) ≥ K(t) it follows that ∂Ku(t)/∂t = c ∂K(t)/∂t
with c ≥ 1, ∀t ∈ [0, r].

For t > r, Ku(t) grows certainly faster than K(t) due to

the fact that the upper bound was constructed by assuming

all interferers transmit in the reference channel m0. Hence,

combining (6) and (7) yields the following upper bound on

ρ(2)(t)

ρ(2)(t) ≤ ρ(2),u(r) =







λ

πM
∆ t ≤ r (8a)

λ2

M
r < t < t0 (8b)

λ2

M2
t > t0, (8c)

where

t0 = r

√

λπ − ∆

λπ(1 − 1/M)
(9)

is the intersection point of ∆r2 + λπ(t2 − r2) = λπt2/M .

IV. LOWER BOUNDS ON THE SUCCESS PROBABILITY

We define the following quantities:

• g0 and {gi}: Unit-mean exponentially distributed channel

gains from X0 to Xrx
0 and from all interferers Xi to Xrx

0 ,

respectively.

• di: Distance from transmitter Xi to reference receiver

Xrx
0 , i.e., di , |Xi − Xrx

0 | = |Xi|.
• ℓ(x) = |x|−α: Path loss function4 with path loss exponent

α > 2.

• β: Required signal-to-interference (SIR) ratio.

• I0 =
∑

Xi∈Φ̃0
giℓ (di): Aggregated interference in the

reference channel m0 measured at the reference receiver

Xrx
0 without counting the reference transmitter X0.

The probability of success is defined as the probability of the

SIR being higher than a certain threshold β [14], i.e.,

ps , P
!o

{
g0d

−α
0

I0
≥ β

}

. (10)

This can be expressed as [10]

ps = P
!o {g0 ≥ βdα

0 I0} = E
!o

{
∏

i

1 − v(di)

}

, (11)

where

v(d) =
1

1 + β−1d−α
0 dα

. (12)

A. Lower Bound: Second Order Product Density Method

In recently published work [10], a lower and upper bound

on ps was proposed which is based on the second- and third

order product densities. For the lower bound, the authors make

use of the relation

E
!o

{
∑

i

f(Xi)

}

= λ−1

∫

R2

ρ(2)(x)f(x) dx (13)

for a point process of intensity λ to obtain [10, Lemma 2]

ps ≥ 1 − λ−1

∫

R2

ρ(2)(x) v(x)dx. (14)

From combining (8), (12) and (14), it follows that

ps ≥ pl
s

, 1 − 2∆

r∫

0

t v(t) dt − 2πλ

t0∫

r

t v(t) dt − 2π
λ

M

∞∫

t0

t v(t) dt.

(15)

4Other path loss functions resolving the singularity problem at d = 0 can
also be used instead.



B. Lower Bound: Non-homogeneous Poisson Approximation

In this approach, the characteristics of I0, conditioned

on the fact that Xrx
0 with mark m0 lies in the origin,

is approximated by a non-homogeneous PPP with intensity

λ(t) = λ/M∂K/∂t. A similar approach was performed in

[4] to analyze the success probability for CSMA. Using the

Laplace functional of a PPP (cf. [4], [11]), we can thus

approximate the lower bound on ps according to

ps ' pl,ap
s , exp

{

−
λ

M

∫

R+

∂Ku(t)

∂t
v(t) dt

}

. (16)

Remark: The right hand side of (15) may become greater

than one as λ increases. This bound is hence useful only for

small λ as already reported in [10]. For λ → 0, (14) holds

with equality and pl
s − pl,ap

s → 0.

C. Relative improvement of local FDMA

For small intensities λ, the improvement of the proposed lo-

cal FDMA compared to unscheduled random channel access5

can be easily analyzed using the relation 1 − e−A ≈ A for

A→ 0. The improvement η is measured in terms of relative

outage probability reduction when switching from unsched-

uled random channel access to locally scheduled FDMA,

according to

η , 1 − lim
λ→0

1 − ps,sched

1 − ps,unsched
. (17)

The success probability for the unscheduled case with unit-

mean exponentially distributed fading gains is given in [15] by

ps,unsched = exp
{
− λ

M π(dαβ)2/αΓ(1 − 2/α)Γ(1 + 2/α)
}

.

Since we only have a lower bound on ps,sched in the case

of local FDMA, we will derive a lower bound on η, i.e., the

minimum relative outage probability reduction, using (15). By

inserting (15) in (17), evaluating the integrals and taking the

limit, η is lower bounded by

η ≥ ηl

, 1 − lim
λ→0

1 − pl
s,sched

1 − ps,unsched

=

(

γ2β− 2
α 2F1

(

1, 2
α ; 1 + 2

α ;−β−1γα
(
1 − 1

M

)−α
2

)

− γ2β− 2
α 2F1

(

1, 2
α ; 1 + 2

α ;−β−1γα
)

+ 2π
αM csc

(
2π
α

)
)

/(
1
M Γ(1 − 2

α )Γ(1 + 2
α )

)

, (18)

where γ , r
d0

and 2F1(a, b; c; z) is the hypergeometric func-

tion [16].

Fig. 2 shows the lower bound ηl vs. the SIR threshold

β for different γ and M . It can be seen that the relative

reduction highly depends on the SIR threshold β as well

as on the ratio γ. Furthermore, the relative reduction is

maximal for M = 2 and decreases with M .6 For M → ∞,

5For instance, frequency hopping code division multiple access (FH-
CDMA).

6The absolute reduction of outage probability of course depends on the
choice of M , cf. [8].
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ηl → 2
απ csc (2π/α) (Γ(1 − 2/α)Γ(1 + 2/α))−1 > 0. This is

an interesting observation, since it states that there is always

an improvement when switching to local FDMA, although the

interference avoidance effect of unscheduled random channel

access increases with M .

V. SIMULATION RESULTS

Fig. 3 shows the outage probability 1−ps vs. the node den-

sity λ for uncoordinated random channel access and scheduled

FDMA. The simulation results based on the CFL-algorithm as

well as the analytical results (15) and (16), now representing

upper bounds on the outage probability, are shown.

It can be seen that the bound pl
s is not very tight for

high λ. This is a result of upper bounding the second order

product density in (8) and of (14). The gain of local FDMA

compared to uncoordinated random channel access is however

noticeable, since the upper bound 1−pl,ap
s is always below

the exact outage probabilities of unscheduled random channel

access. Moreover, the simulation results reveal a significant

reduction of outage probability compared to the unscheduled

case.

The minimum relative outage probability reduction can be

well observed comparing Fig. 2 and Fig. 3. Furthermore, the

asymptotic behavior of ηl already applies to node densities

between 10−3-10−2.



VI. CONCLUSION

As we have seen, local FDMA scheduling provides a signif-

icant advantage over uncoordinated channel access especially

at low spectral efficiencies. This is an indicator in favor of

spread spectrum channel access in ad hoc networks, something

already observed for uncoordinated channel access in [17].

We have also shown that the gain over uncoordinated chan-

nel access is high when only a small number of channels are

available and is lower bounded by a constant for high number

of channels; an argument in favor of the implementation of

coordination in frequency hopping large ad hoc network that

have a small to moderate number of channels available.

The applied approximation methods yield some insight

into the structurally complicated mathematical model of the

interference field arising from a non-Poisson point processes

with spatially correlated marks. Especially the K-function

approximation proved to be a valuable tool as it can readily

be determined empirically and be verified analytically.

APPENDIX A

PROOF OF THEOREM 1

Bound for t ≤ r: We condition Φ̃0(b(0, t)) on the fact that

the reference transmission pair X0, X
rx
0 has |C0| = k conflicts

that have to be colored, i.e.,

E
!o

{
∑

i

1{Xi∈Φ̃0(b(0,t))}

}

=

∞∑

k=M

E
!o

{
∑

i

1{Xi∈Φ̃0(b(0,t))}

∣
∣
∣|C0| = k

}

P {|C0| = k} .

(A.1)

For k < M , all conflicts are resolved since the reference pair

can choose one of the remaining non-occupied channels. We

first focus on the term P {|C0| = k}: Using the definition from

(3), this term can be calculated as

P {|C0| = k} = P

{
∑

i

1{Xi∈C0}

︸ ︷︷ ︸

A1

+
∑

i

1{X rx
i
∈C0}

︸ ︷︷ ︸

A2

= k

}

= P

{
k⋃

ℓ=0

[
A1 = ℓ

]
∧

[
A2 = k − ℓ

]

}

(a)
=

k∑

ℓ=0

P
{[

A1 = ℓ
]
∧

[
A2 = k − ℓ

]}

(b)
=

k∑

ℓ=0

P {A1 = ℓ}P {A2 = k − ℓ} , (A.2)

where (a) follows from the fact that the events are disjoint, and

(b) is a result of the independence between the two sums A1

and A2. The first sum A1 is Poisson distributed with intensity

λπr2. From the random translation theorem [4] it follows that

the second sum A2 is also Poisson distributed with intensity

Λ(b(X0, r)) = λ

∫

R2

g(x, b(X0, r)) dx, (A.3)

where the probability kernel g(x, b(X0, r)) is the probability

of a point x to be shifted into b(X0, r), i.e.,

g(x, b(X0, r)) = 1{x/∈b(0,r)}P{y ∈ b(X0, r)|x}. (A.4)

Note that the indicator function is necessary to require that

g(x, b(X0, r)) = 0 for x ∈ b(0, r), i.e., points coming from

b(0, r) are not taken into account here as they are creating

conflicts to the reference receiver X rx
0 and hence, are already

captured by the first sum.

Since the locations of the receivers X rx
i are uniformly

distributed in a disc of radius r around their corresponding

transmitter Xi, the term P{y ∈ b(X0, r)|x} is proportional to

the intersection area of b(y, r) and b(X0, r), and is given by

P{y ∈ b(X0, r)|x} =
|b(y, r) ∩ b(X0, r)|

|b(y, r)|

=
2r2 arccos

(
|y|
2r

)

− |y|
2

√

4r2 − |y|2

πr2
.

(A.5)

See Fig. 4 for an illustration. Using (A.4), we can rewrite (A.3)

as

Λ(b(X0, r)) = λ

∫

R2

1{x/∈b(0,r)}P{y ∈ b(X0, r)|x} dx

= λ

∫

R2\b(0,r)

P{y ∈ b(X0, r)|x} dx

= λπr2 − λ

∫

b(0,r)

P{y ∈ b(X0, r)|x} dx

︸ ︷︷ ︸

,ζ

. (A.6)

After switching to polar coordinates, the integral in (A.6) can

be written as

ζ = 2λ

∫ r+d

0

∫ Ω(z)

0

z P{y ∈ b(X0, r)|z, φ} dφdz, (A.7)

where 0 ≤ z ≤ r + d and 0 ≤ φ ≤ Ω(z) define the points

within b(0, r) from the viewpoint of X0, see Fig. 4. The

function Ω(z) denotes the length of the circle with radius z
around the point X0 that is contained in b(0, r) and is given

by

Ω(z) =

{
π, 0 ≤ z ≤ r − d (A.8a)

arccos
(

r2−d2−z2

−2dz

)

, r − d < z ≤ r + d. (A.8b)

Since P{y ∈ b(X0, r)|z, φ} = P{y ∈ b(X0, r)|z}, we can

rewrite (A.7) as

ζ =
2λ

πr2

∫ r+d

0

z Ω(z)
[

2r2 arccos
(

z
2r

)
−

z

2

√

4r2 − z2
]

dz.

(A.9)

Combining (A.3)-(A.9), we can finally rewrite (A.2) as

P {|C0| = k} = (λπr2)ke−(2λπr2−ζ)
k∑

ℓ=0

(1 − ζ
λπr2 )k−ℓ

ℓ!(k − ℓ)!
.

(A.10)
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Fig. 4. Illustration supporting (A.5), (A.8) and (A.9).

Since the first M −1 conflicts are properly colored, we now

consider the k − M + 1 remaining conflicts. Without loss of

generality, we index the nodes associated with these conflicts

by Yj , j = 1, . . . , k − M + 1.

On average, (k − M + 1)/2 of these nodes will be trans-

mitters. Thus we can state that P{Yj is a transmitter} = 1/2.

Given Yj is a transmitter, it follows from the stationarity of

Φ that this transmitter is located within b(0, t) with probability

P{Yj ∈ b(0, t)|Yj is transmitter} = t2/r2. In order to interfere

with X rx
0 , this transmitter needs to transmit in the reference

channel m0. The probability of this event can be upper

bounded as

P
!o {mj = m0|Yj is transmitter in b(0, t)}

= P
!o{|Cj | ≥ M}P

!o{mj = m0 | |Cj | ≥ M}

+ P
!o{|Cj | < M}P

!o{mj = m0 | |Cj | < M}
︸ ︷︷ ︸

=0

< P
!o{mj = m0 | |Cj | ≥ M} =

1

M
, (A.11)

where the last equation is explained by the fact that no

particular channel should be favored after averaging over all

possible point patterns, while letting Yj , X rx
0 and X0 fix.

The conditional expectation from (A.1) can hence be written

as

E
!o

{
∑

i

1{Xi∈Φ̃0(b(0,t))}

∣
∣
∣|C0| = k

}

= E
!o

{ k−M+1∑

j=1

1{Yj interferes with X rx
0
}

}

=

k−M+1∑

j=1

P
!o
{

Yj interferes with X rx
0

}

=
k−M+1∑

j=1

P
!o {mj = m0|Yj is transmitter in b(0, t)}

× P{Yj ∈ b(0, t)|Yj is transmitter}P{Yj is transmitter}

<

k−M+1∑

j=1

t2

2r2M
=

t2(k − M + 1)

2r2M
. (A.12)

Substituting (A.12) and (A.10) in (A.1) yields the result for

t ≤ r.

Bound for t > r: A simple upper bound is constructed by

assuming that all interferers within the annulus λπ(t2 − r2)
transmit in the reference channel m0. For t > t0, the intensity

measure λ
M πt2 of the PPP gives an upper bound.
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