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Abstract—We consider a wireless relay network in a Rayleigh
fading scenario where transmission power as well as transmission
time per user are optimized. The criterion of optimization is
the capacity. We apply an optimization algorithm based on
Brent’s method. Hence, we employ parabolic interpolation for
finding the optimum whenever possible in order to achieve a
faster convergence. If parabolic interpolation is not suitable,
we use golden section search which is a robust root-finding
method. Optimization takes place in two steps. First, we optimize
power allocation and consider time as parameter. Second, time is
optimized. We demonstrate that, depending on the cooperation
strategy, remarkable capacity gains over direct transmission can
be achieved by multi-routing. However, for a high overall trans-
mission power, direct transmission outperforms multi-hopping.
Generally, capacity gains increase with decreasing overall system
power, which demonstrates that relaying is beneficial for low
overall transmission powers.

I. INTRODUCTION

Recently an enormous growth in the interest of relay net-

working can be noticed. The basic aim of relaying is to achieve

spatial diversity in order to combat signal fluctuations at the

receiver. For that purpose, several mobile users pool their

resources in order to create a virtual antenna array. Suitable

cooperation strategies lead to great improvements with respect

to maximal data rate, error probability, transmission range, and

outage probability [1].

The classical concept of the relay channel was introduced

by van der Meulen in 1968 [2]. A rigorous information-

theoretic analysis has been exposed by Cover and El Gamal

in 1979 [3]. It was not until 2003 when the interest in

cooperation began to rise again [4], [5]. The main reason

for this might be limitations in hardware and chip design

which made cooperation impossible. Since then, cooperation

in wireless networks has become one of the most important

parts in research. Major reason for this is that the conservative

way to transmit data is not sufficient anymore for the needs

of future multi-media applications due to an increasing num-

ber of users and the existence of more resource demanding

services. These demands require higher data rates compared

to single-hop transmission with one antenna at each node. An

alternative solution to this problem is the use of multiple-input

multiple-output (MIMO) systems [6], [7]. However, due to

size, cost, and/or hardware limitations, mobile nodes can only

be equipped with a determined number of antennas.

Hence, we use a network scenario in this paper where each

node is equipped with one antenna and optimize resource

allocation of power and time. Hasna and Alouini also consid-

ered power allocation for relayed transmission in [8] where

outage probability has been used as optimization criterion.

In [9] power and time have been optimized together for an

opportunistic protocol and a long-term power constraint. We

present an optimization algorithm that is suitable for practical

implementation. We will see that our results match perfectly

with those derived by Gündüz and Erkip in [9].

The paper is organized as follows. Section II describes the

network and the path-loss model. In Section III optimiza-

tion of resource allocation is dealt with. We first describe

the optimization problem and then introduce an optimization

algorithm based on Brent’s method [10], [11]. Section IV

is concerned with the simulations and results are presented.

Finally, Section V concludes the paper.

II. NETWORK MODEL

We consider the network depicted in Fig. 1. It consists

of one source S, one relay R, and one destination D. The

channel gains hi, i ∈ {sd, sr, rd}, are subject to a Rayleigh

fading profile with variances σ2
i . Hence, the probability density

function of |hi| is given by

f|hi|(|hi|) =
2|hi|
σ2

i

exp

(

−|hi|
σ2

i

)

, (1)

where σ2
i = E(|hi|2). Thus, |hi|2 follow an exponential

distribution with mean value σ2
i :

f|hi|2(|hi|2) =
1

σ2
i

exp

(

−|hi|2
σ2

i

)

(2)

We use a common path-loss model, where the channel vari-

ances are inverse proportional to the distance between two

nodes. We can write σ2
i ∝ d−α

i , where di is the distance

between two users and α denotes the path-loss exponent. For

cellular mobile networks, α takes values between 3 and 5. The

distance S−D is normalized to 1. We furthermore assume the

relay to be placed on a straight line between S and D. Hence,

dsr = 1 − drd (see Fig. 2). We have

σ2

sd = 1, σ2

sr =
1

dα
sr

, σ2

rd =
1

(1 − dsr)α
. (3)
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Fig. 1. Network consisting of source S, relay R, and destination D. Channel
gains are represented by hsd, hsr, and hrd.

S R Ddsr 1 − dsr

Fig. 2. One-dimensional network geometry. The distance between S and D

is normalized to dsd = 1. Furthermore, dsr = 1 − drd.

On each channel, additive white Gaussian noise is added.

Noise realizations are considered to be independent and follow

CN (0, 1). A network realization is described by the triple

(|hsd|2, |hsr|2, |hrd|2). We assume full channel state informa-

tion at the receivers and partial channel state information at

the transmitters. The relay operates in a half-duplex mode so

that it cannot receive and transmit simultaneously. Decode-

and-forward is used at the relay, which means that the relay

decodes its receive signal and encodes it again before re-

transmission. An allocation strategy (P, t) is described by the

power allocation vector P = [Ps, Pr]
T and the time allocation

vector t = [t, 1− t]T , where Ps denotes the source power, Pr

denotes the relay power, and t is the time fraction used for

source transmission (i.e., 1 − t is used for relaying).

III. RESOURCE ALLOCATION

In this section we describe an algorithm where power

and time allocation are optimized to achieve the maximal

capacity depending on a power constraint and channel gains.

We first describe the optimization problem and then present

an optimization algorithm based on Brent’s method.

A. Optimization Problem

The overall transmission power Ptot is constrained like

follows:

Ptot

△
= tPs + (1 − t)Pr

Here, t describes the time ratio that is reserved for source

transmission, Ps is the source power, and Pr is the relay power.

The overall aim is to derive an optimal resource allocation so

that the capacity is maximized:

C∗ = max
t

max
Ps

{C(Ptot,h, t) : tPs + (1 − t)Pr = Ptot} (4)

subject to =

{

Ps ∈ [0, Ptot/t]

t ∈ (0, 1]

where h represents the triple (|hsd|2, |hsr|2, |hrd|2). The op-

timization algorithm consists of two subsequent steps. First

power allocation is optimized, where overall transmission

power Ptot and time t are considered as parameters. In the

second step time allocation is optimized and the pair (P ∗, t∗)
which maximizes capacity is determined. Here, we have an

optimization on the closed interval t ∈ (0, 1). The function

values are provided by the power allocation in the first step.

B. Optimization Algorithm

For both optimization steps, i.e., optimization of power

and time allocation, we apply an algorithm based on Brent’s

method [10], [11].

1) Description: Brent’s method is a root-finding algorithm

in numerical analysis that does not require any derivations of

functions. We use a similar algorithm by combining golden

section search and parabolic interpolation. The advantage

of this combination is that we have a robust optimization

algorithm due to the reliability of the golden section search and

a faster convergence (compared to the golden section search

alone) due to the use of parabolic interpoaltion whenever

possible. There are several requirements for the usage of such

an algorithm:

• The function that is optimized has to be continuous with

respect to the optimization variable.

• Optimization can only be done with respect to one

variable.

• The function has to be unimodular in order to be able

to find the extreme value. If there are more than one

extreme values, then only one extreme value will be

found. However, this has not to be the global optimum.

We will later see that these requirements are met when we

maximize capacity and thus the applied optimization algorithm

provides reliable results.

2) Golden Section Search: Consider a unimodal function

on the closed (bracketing) interval (a, b). Hence, there exists

exactly one p ∈ (a, b) so that the function is decreasing in

(a, p] and increasing in [p, b) (or vice versa). We next choose

an initial value of v = a + c(b − a) with

c =
1

φ2
=

3 −
√

5

2
≈ 0.382, (5)

where φ is the golden ratio

φ =
1 +

√
5

2
. (6)

In the next iteration, the bracketing interval is (v, b) and this

interval is now divided with respect to the golden ratio again.

Say we get the point u. Now, if f(u) < f(v), the new

bracketing interval will be (u, b). Otherwise, for f(u) > f(v),
the new bracketing interval is (a, u). Golden section search

reliably finds the optimum of a function, even if this function

behaves “uncooperatively” (which means that it progresses

unsteadily).
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TABLE I
FIVE ITERATIONS OF THE OPTIMIZATION ALGORITHM (CF. FIG. 3).

# x f(x) Procedure

1 0.76 -1.81 initial

2 1.23 -2.13 golden

3 1.52 -2.27 golden

4 1.71 -2.02 golden

5 1.44 -2.24 parabolic

3) Parabolic Interpolation: Parabolic interpolation con-

verges much faster than golden section search. With parabolic

interpolation the optimum of a smooth function can be found

by approximating the function by a parabola. We consider

three points (u, f(u)), (v, f(v)), and (w, f(w)) of the function

f . These three points clearly define a parabola. The minimum

x∗ of this parabola is given by

x∗ = v−1

2

(v − u)2(f(v) − f(w)) − (v − w)2(f(v) − f(u))

(v − u)(f(v) − f(w)) − (v − w)(f(v) − f(u))
.

(7)

We use parabolic interpolation whenever possible. If an ap-

proximation of the function f by a parabola is not acceptable,

we apply the golden section search. Therefore, we exploit two

advantages. first, the golden section search ensures that we

find an optimum. Second, the use of parabolic interpolation

leads to a faster convergence.

We now give a simple example that shows the operating

mode of the optimization algorithm. The function

−f(x) = −1

2
min{log2 (1 + bx) ,

log2 (1 + ax) + log2 (1 + cz)}
is minimized with respect to the variable x. We choose a = 1,

b = 14.78, c = 17.35, and z = 2(1 − x). We will later

see that f(x) indeed shows similarities to the achievable rate

of a multi-route relay network with decode-and-forward at

the relay. Fig. 3 shows the function and indicates the first

5 iterations. We can see that f(x) is unimodal and that

there exists exactly one extreme value. The point 1 is the

initial point that has been chosen with respect to the golden

ratio. The points 2, 3, and 4 have been found by the golden

section search. For point 5 parabolic interpolation has been

used. Values for the first five iterations are given in Tab. I.

Optimization surely doe not stop here, but continues until

a certain termination criterion is met, e.g., the change of

the functional value f(x) is lower than 10−4 for subsequent

iterations.

C. Capacity

In this section we give equations on the capacities of

two cooperation strategies. The basic transmission scheme is

illustrated in Fig. 4. The first phase is reserved for source

transmission and the second phase for relay transmission.

First, consider multi-routing. Here, the source sends infor-

mation in the first transmission phase to the relay and the

destination. In the second phase the relay transmits a newly

encoded version of the source signal to the destination, thus,

0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

x

−f(
x
)

1

2
5 3

4

Fig. 3. Operating mode of the optimization algorithm. Point 1 is the initial
value. Points 2, 3, and 4 have been found by golden section search, whereas
point 5 has been found by parabolic interpolation.

S

R

t 1 − t

Ps

Pr

Fig. 4. Basic transmission scheme. The first phase of duration t is reserved
for source transmission and the second phase for relay transmission.

creating diversity gains. Source and relay use independently

created Gaussian codebooks. Consequently, the destination

must know both codebooks. The achievable rate for this

transmission scheme becomes

CMR = min{t log2(1 + |hsr|2Ps),

t log2(1 + |hsd|2Ps) + (1 − t) log2(1 + |hrd|2Pr)},(8)

where the first expression in the min-function describes the

maximal rate at which the relay can decode the source signal

and the second expression is the maximal rate at which

the destination can decode the source and the relay signal.

We see that the use of independent codebooks leads to an

accumulation of mutual information at the destination.

Second, consider multi-hopping. The difference between

multi-hopping and multi-routing is that for multi-hopping there

is no direct path from source to destination. In the first phase

the source transmits only to the relay and in the second

phase the relay transmits to the destination. In that case the

destination only has to know the codebook from the relay.

Accordingly, we get an achievable rate of

CMH = min{t log2(1 + |hsr|2Ps), (1− t) log2(1 + |hrd|2Pr)},
(9)

whose maximum for t = 1/2 is clearly limited by the weakest

channel in the network. (For a proof of this see [12], Ch. 2.3.)

Our aim is to find an optimal allocation of power and time
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so that capacity is maximized (cf. (4)):

C∗
{MH,MR} = max

t
max

Ps

C{MH,MR} (10)

The parameters are the relay location dsr ∈ (0, 1) and the path-

loss exponent α. As explained previously, we first optimize

power allocation and consider t as parameter. In the next

step, t is optimized. For both optimization tasks we apply the

presented algorithm based on Brent’s method.

IV. SIMULATIONS

In this section we present the simulation results. Fig. 5

illustrates the optimal power allocation over the overall trans-

mission power

P ∗ =
t∗Ps

Ptot

(11)

for the source when the relay is located at dsr = 0.3 (this

already includes optimal time allocation as well). The power

allocated to the source for the multi-route network is always

higher than that for the multi-hop scenario. This is due to the

fact that for multi-hopping there is no direct connection from

S to D. Hence, it suffices to allocate less power to the source

in order to achieve a non-outage transmission to the relay. For

the relay power the situation is vice versa. Since there is no

signal from the source to the destination for the case of multi-

hopping, the relay transmission has to be much more reliable

compared to multi-routing. Therefore, more power is allocated

to the relay.

In Fig. 6 the optimal time allocation t∗ over the overall

transmission power is depicted. We see that for small values

of Ptot there is no significant difference between multi-routing

and multi-hopping with t∗ being slightly bigger for multi-

hopping. For Ptot ≈ 5 dB both curves intersect. From that

point on the difference between t∗ of multi-routing and multi-

hopping increases for increasing values of Ptot.

In order to see the gains that we achieve over direct

transmission in terms of capacity, we define the capacity gain

as

G(Ptot, dsr)
△
= 10 log10

(

C∗
{MH,MR}(Ptot, dsr)

CDT(Ptot)

)

[dB].

(12)

In (12) CDT(Ptot) is given by

CDT(Ptot) = log2(1 + |hsd|2Ptot). (13)

The results are shown in Fig. 7. For instance, consider a

multi-route scenario with Ptot = 1 dB and a relay location

of dsr = 0.3. Then for t∗ = 0.31 and P ∗ = 0.29 a gain

of approximately 2.7 dB can be achieved in capacity. We

furthermore see three interesting facts. First, multi-routing

always performs better than multi-hopping. This is due to the

fact that multi-hopping does not create any kind of spatial

diversity in contrast to multi-routing. Second, multi-routing

achieves always a gain over direct transmission. Third, this is,

however, not always the case for multi-hopping. It can be seen

that for Ptot = 10 dB and dsr ∈ (0, 0.2) and dsr ∈ (0.8, 1),
respectively, direct transmission outperforms multi-hopping.
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Fig. 5. Optimal power allocation P ∗
= t∗Ps/Ptot for the source. Distance

S − R is dsr = 0.3.
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Fig. 6. Optimal time allocation t∗ for the source. Distance S−R is dsr = 0.3.

The reason for this is quite obvious. When the relay is closely

located either to the source or the destination, one transmission

distance for multi-hopping is in the range of the source-to-

destination distance and separation of power does not really

make sense.

V. CONCLUSIONS

We proposed a combined optimization strategy for adaptive

resource allocation in a wireless relay network. Allocation

of transmission power and time per mobile user have been

optimized in order to achieve a maximal overall capacity. We

presented a two-step optimization algorithm, where we first

optimize power and in a subsequent step optimize time. The

algorithm is based on Brent’s method, a well-known root-

finding algorithm in numerical analysis without the need of

derivations. We have shown that dependent on the relay loca-

tion and the overall system power Ptot remarkable gains can be
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Fig. 7. Capacity gain of multi-route and multi-hop over direct transmission
when optimized power allocation P ∗ and optimized time allocation t∗ are
used.

achieved by multi-routing and multi-hopping in comparison to

direct transmission. However, for a higher overall transmission

power there are relay locations where direct transmission

outperforms multi-hopping. The reason for this is that multi-

hopping, in contrast to multi-routing, does not create spatial

diversity in the wireless network. Generally, we can state that

capacity gains increase with decreasing overall system power.

This clearly shows that relaying is beneficial for low overall

transmission powers.
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