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Abstract—We present the ǫ-outage capacity of incremental
relaying at low signal-to-noise ratios (SNR) in a wireless
cooperative network with slow Rayleigh fading channels. The
relay performs decode-and-forward and repetition coding is
employed in the network, which is optimal in the low SNR
regime. We derive an expression on the optimal relay location
that maximizes the ǫ-outage capacity. It is shown that this
location is independent of the outage probability and SNR
but only depends on the channel conditions represented by a
path-loss factor. We compare our results to the ǫ-outage capacity
of the cut-set bound and demonstrate that the ratio between the
ǫ-outage capacity of incremental relaying and the cut-set bound
lies within 1/

√

2 and 1. Furthermore, we derive lower bounds
on the ǫ-outage capacity for the case of K relays.
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I. INTRODUCTION

Cooperation in wireless networks is a promising technique

to mitigate fading, which results in a fluctuation in the ampli-

tude of the received signal. The basic idea behind cooperation

is that several users in a network pool their resources in order

to form a ‘virtual’ antenna array which creates spatial diversity

[1], [2], [3]. This diversity leads to an increased exponential

decay rate in the error probability with increasing signal-to-

noise ratio (SNR) and thus becomes more evident in the high

SNR regime. For instance, a diversity order of 2 means that the

outage probability decreases proportional to 10−2 with a 10 dB

increase in the SNR of the system [4]. However, SNR cannot

be increased arbitrarily. Especially for applications such as ad-

hoc and sensor networks, power (or energy) plays a major role

in the design since it is a limited resource [5]. So, for practical

considerations, the low SNR regime is much more interesting.

For delay constrained transmission over slowly varying

channels, the metric of pure capacity (‘Shannon’ capacity)

which is the maximal transmission rate for which the error

probability can be made arbitrarily small (under an average

power constraint) is not useful anymore. In the strict sense,

the Shannon capacity for those channels is 0 and other metrics

have to be found that are more suitable. Therefore, ǫ-outage

capacity has been defined as the maximal transmission rate

for which the outage probability is not larger than ǫ [6],

[7]. The reason why outage probability is considered here

is due to the fact that it approximates the error probability
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Fig. 1. Network consisting of source S, relay R, and destination D. Channel
gains are represented by hsd, hsr, and hrd. BC and MAC denote the cuts for
the broadcast channel and the multiple access channel, respectively.

quite well in coded systems with long enough block size [8].

In [9] ǫ-outage capacity in the low SNR regime has been

investigated for a frequency division cooperative system. It

is shown that a bursty amplify-and-forward protocol achieves

the optimal performance and that the ǫ-outage capacity for the

non-coherent scenario is equal to the coherent one. A scheme

that can also have a variable transmission rate dependent on the

channel conditions has been investigated in [10]. The authors

considered the performance of hybrid automatic repeat request

(ARQ) where the data rate is increased in order to maintain a

constant outage probability.

In this paper, we consider incremental relaying (IR) [4]. In

IR networks, the destination sends a one-bit acknowledgment

(ACK) to the relay and the source if it is able to decode

the source message successfully. If not, it sends a NACK to

indicate failure of transmission. In this case the relay, if it has

been able to decode the source message, forwards the source

message to the destination by employing repetition coding.

The destination then performs maximum ratio combining of

the signals from the source and the relay, which leads to an

accumulation of SNR. We stress that by using jointly designed

but independent codebooks (i.e., parallel channel coding), it is

generally possible to achieve better results. However, in the

low SNR regime, parallel channel coding can be deduced to

repetition coding which shows that repetition coding is optimal

[9].

The remainder of the paper is organized as follows. In

Section II we present the system model. Section III deals



with the ǫ-outage capacity. We first introduce the incremental

relaying protocol and derive the corresponding expression on

ǫ-outage capacity. Then we consider the cut-set bound in the

case of a single relay. The optimal relay location where ǫ-

outage capacity is maximized is also presented. In Section IV

we compare the ǫ-outage capacity of incremental relaying to

the cut-set upper bound and generalize our results to the case

of K relays. Finally, Section V concludes the paper.

II. NETWORK MODEL

We consider the network depicted in Fig. 1 which consists

of a source (S), a relay (R), and a destination (D). The

channel gains hi, i ∈ {sd, sr, rd}, are from a slow Rayleigh

fading profile with variances σ2
i . Hence, |hi|2 follows an

exponential distribution with mean value σ2
i and phases are

uniformly distributed over [0, 2π). A common path-loss model

is applied, where the channel variances σ2
i are proportional

to d−α
i with di being the distance between two nodes. The

parameter α describes the path-loss exponent which typically

lies between 3 and 5 for cellular mobile networks. We also

have white Gaussian noise added at each receiving node. Noise

realizations are considered to be independent and identically

distributed (i.i.d.) and all come from a zero-mean Gaussian

distribution with variance N , i.e., n ∼ CN (0, N). An average

transmit power constraint of P is assumed at the source and

the relay over a transmission block and SNR is defined by

SNR = P/N . A practical constraint is imposed on the relay

which allows the relay to either receive or transmit at any

instant, but not to do both simultaneously, i.e., the relay op-

erates in the half-duplex mode. Moreover, we assume that the

relay employs decode-and-forward protocol for cooperation,

which means that the relay decodes the source message and

encodes it again before retransmission. This relay strategy has

the advantage that there is no noise enhancement compared

to amplify-and-forward, where the relay simply amplifies its

receive signal with a certain amplification factor to satisfy the

power constraint. We assume throughout the paper that there

are enough channel uses per transmission phase so that the

codes achieve their intended rates reliably if they are below

the channel capacity.

III. OUTAGE CAPACITY

A. Definition

As already mentioned before, the Shannon capacity in a

slow fading channel is 0 when the transmitter does not have

channel state information. Therefore, ǫ-outage capacity has

been introduced as a new performance metric [6]. It is defined

as follows:

Definition 1: ǫ-outage capacity Cǫ is the highest rate

R such that outage probability satisfies pout(R,SNR) :=
Pr(C(SNR) < R) ≤ ǫ, where 0 ≤ ǫ ≤ 1 and C(SNR) is

the instantaneous capacity, which is a random variable due to

random variations in the channel. For a given ǫ, we have:

Cǫ := sup
R: pout(R,SNR)≤ǫ

R (1)

one block

FB = 0

FB = 1

S with 2R

S with 2RS with 2R

R with 2R

Fig. 2. Transmission model for incremental relaying. If the source-destination
link is not in outage (feedback FB = 1), the source transmits during the
second sub-block, too. If the source-destination link is in outage (feedback
FB = 0), the relay aids communication during the second sub-block.

B. Incremental Relaying

We consider incremental relaying (IR) as the cooperation

protocol which exploits the availability of a one-bit feedback

from the destination in the form of an ACK/NACK signal.

Confer to Fig. 2 for the following description. For a given

R, we divide one transmission block into two sub-blocks of

equal length. The transmission rate is set to 2R within each

sub-block in order to have the same amount of information

transmitted compared to the case where S transmits over the

whole block with rate R. Now, if the source-destination link

is not in outage at the end of first sub-block, information

is transmitted over half a block and we get a rate of 2R.

Since we consider a block-fading model, this automatically

means that during the second sub-block S can transmit its

next message which will then be sent successfully to D and

there is not need for the relay to aid communication. However,

if the source-destination link is in outage, the relay transmits

over the second sub-block and we get an overall rate of R.

We define A as the event that the source-destination link is in

outage, i.e., we have

A := {hsd : |hsd|2 < γ},
where we use the definition

γ(R,SNR) :=
22R − 1

SNR
(2)

and drop the dependence on R and SNR for the sake of brevity.

In a similar fashion, we define

B :=
{
hsr : |hsr|2 < γ

}

C :=
{
(hsd, hrd) : |hsd|2 + |hrd|2 < γ

}
.

The system is in outage either when both the source-

destination as well as the source-relay link are in outage, or

when the relay is able to decode, but the accumulation of

SNR from the source and the relay at the destination still is

not large enough to exceed a required minimum threshold.



Dropping the dependence on R and SNR for simplicity, the

outage probability can be written as:

pout = Pr(A) Pr(B) Pr(C|AB) + Pr(A) Pr(Bc) Pr(C|ABc)

= Pr(A) Pr(B) + Pr(Bc) Pr(C),

where Bc describes the complement of B, Pr(C|AB) = 1, and

Pr(A) Pr(C|ABc) = Pr(C) due to C ⊆ A. With our system

model, we get

pout = Pr
(
|hsd|2 < γ

)
Pr
(
|hsr|2 < γ

)

+Pr
(
|hsr|2 ≥ γ

)
Pr
(
|hsd|2 + |hrd|2 < γ

)
. (3)

In order to be able to calculate the outage probability, we use

the following lemma whose proof can be found in [9].

Lemma 1: Let w =
∑K

k=0 uk, where uk are independent

exponentially distributed random variables with mean σ2
k. If

g(x) is a continuous function at x = 0 and g(x) → 0 as x → 0,

then the cumulative distribution function F of w satisfies

lim
x→0

1

g(x)K+1
F (g(x)) =

1

(K + 1)!
K∏

k=0

σ2
k

. (4)

Outage probability in the low SNR regime can then be

expressed as follows if the condition γ → 0 for SNR → 0
is met:

lim
ǫ→0

SNR→0

pout

γ2
= lim

ǫ→0
SNR→0

{
Pr(|hsd|2 < γ)

γ

Pr(|hsr|2 < γ)

γ

+
Pr(|hsd|2 + |hrd|2 < γ)

γ2

Pr(|hsr|2 ≥ γ)

1

}

=
1

σ2
sd

1

σ2
sr

+
1

2σ2
sdσ2

rd

· 1

=
2σ2

rd + σ2
sr

2σ2
sdσ2

srσ
2
rd

(5)

Here, ǫ → 0 implies γ → 0, which means that the rate is

adapted in accordance to the SNR. From Definition 1, the ǫ-

outage capacity is:

Cǫ =
1

2
log2

(

1 + SNR

√

2σ2
sdσ2

srσ
2
rdǫ

2σ2
rd + σ2

sr

)

(6)

However, this expression does not include the variable

transmission rate that occurs for incremental relaying in a

long-term perspective. To account for that, we have to consider

the average amount of sub-blocks required for transmission. If

the source-destination link is not in outage, we need one sub-

block, no matter if the relay is able to decode the source signal

or not. If the source-destination link is in outage, we then have

to transmit over two sub-blocks. Again, the number of sub-

blocks required for transmission does not depend on the ability

of the relay to decode the source signal. Let us define a random

variable N that denotes the number of transmission phases.

The mean of N becomes E(N) = 1 + Pr(A). The ǫ-outage

d
∗ sr
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Fig. 3. Optimal source-relay distance d∗sr versus path-loss factor α. For
α → ∞ d∗sr tends asymptotically to d∗sr = 0.5. d∗sr(α = 2) = 1/3.

capacity of incremental relaying, denoted by the superscript

IR, can now be expressed as:

CIR
ǫ =

2Cǫ

E(N)
=

1

E(N)
log2

(

1 + SNR

√

2σ2
sdσ2

srσ
2
rdǫ

2σ2
rd + σ2

sr

)

(7)

The factor 2/E(N) is due to the fact of possible reduction of

required transmission phases. If we only need one transmission

phase, i.e., half a block (see Fig. 2), we have a gain of 2. If we

need two phases, i.e., the whole block, then we are as good

as a relay network without feedback where the relay always

transmits if it has been able to decode the source message.

Therefore, we have

1 ≤ CIR
ǫ

Cǫ

≤ 2. (8)

Assume that the relay is located on a straight line between

the source and the destination. Accordingly, drd = 1 − dsr.

Moreover, let all distances be normalized to dsd so that σ2
sd =

1. This yields

CIR
ǫ =

1

E(N)
log2

(

1 + SNR

√

2ǫ

2dα
sr + (1 − dsr)α

)

. (9)

The optimal relay location which maximizes ǫ-outage capacity

becomes

d∗sr = arg max
dsr

CIR
ǫ = arg min

dsr

Ψ(dsr), (10)

where Ψ(dsr) = 2dα
sr + (1 − dsr)

α. It can easily be seen that

the optimal relay location is independent of SNR and ǫ. By

setting the derivation of Ψ(dsr) with respect to dsr equal to 0,

∂Ψ(dsr)

∂dsr
= 0, (11)

we get

d∗sr =
1

1 + α−1
√

2
< 0.5. (12)



The fact that d∗sr is bounded by 0.5 corresponds to results

presented in [11], where it is demonstrated that decode-and-

forward performs better if the relay is located closer to the

source. For free-space propagation, e.g., we have d∗sr(α = 2) =
1/3 and for α = 3, d∗sr(α = 3) =

√
2 − 1 ≈ 0.4142. This is

illustrated in Fig. 3. We clearly see that d∗sr is monotonically

increasing in α. For the worst channel condition, i.e., α →
∞, the relay should be located half-way between source and

destination, which also seems clear from an intuitive point of

view.

C. Cut-Set Bound

We next consider the cut-set bound (max-flow min-cut

theorem) of the relay channel with Gaussian codebooks. Since

it is an upper bound on the flow of information in any network

that consists of multiple terminals, it clearly serves as an upper

bound for incremental relaying. Hence, the best we could do

is to achieve the cut-set bound. The cut-set bound of the relay

channel yields:

I = min{log2(1 + (|hsd|2 + |hsr|2)SNR)
︸ ︷︷ ︸

BC-cut

,

log2(1 + (|hsd|2 + |hrd|2)SNR)
︸ ︷︷ ︸

MAC-cut

} (13)

The BC-cut and the MAC-cut are illustrated in Fig. 1. We now

follow exactly the same steps that we used for incremental

relaying in order to get an expression of ǫ-outage capacity.

First, outage probability in the low SNR regime, where again

the condition γ → 0 for SNR → 0 must be met, becomes:

lim
ǫ→0

SNR→0

pout

γ2
= lim

ǫ→0
SNR→0

{
Pr(|hsd|2 + |hsr|2 < γ)

γ2

+
Pr(|hsd|2 + |hsr|2 ≥ γ)

1

Pr(|hsd|2 + |hrd|2 < γ)

γ2

}

=
σ2

rd + σ2
sr

2σ2
sdσ2

srσ
2
rd

(14)

Then, the ǫ-outage capacity is

CCSB
ǫ ≥ 1

1 + ǫ
log2

(

1 + SNR

√

2σ2
sdσ2

srσ
2
rdǫ

σ2
rd + σ2

sr

)

, (15)

where the superscript CSB stands for cut-set bound and we

have applied E(N) ≤ 1 + ǫ. This upper bound is reasonable

since our aim is to have an overall outage probability lower

then or equal to ǫ. The probability for an outage after the first

sub-block clearly is higher than ǫ, i.e., Pr(A) ≥ ǫ, and we get

a tighter upper bound by setting E(N) ≤ 1 + ǫ.

IV. COMPARISON

A. One-relay Case

In this section, we compare the ǫ-outage capacity of incre-

mental relaying to the cut-set bound. For that purpose, we use

the following performance criterion.
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Fig. 4. Ratio ∆(ǫ) of ǫ-outage capacity of incremental relaying to the cut-
set bound for γ → 0 and α = 3. When the relay is placed close to the

destination, we get ∆(ǫ) = 1/
√

2. When the relay is located close to the
source, we have ∆(ǫ) = 1.

Definition 2: The ratio between incremental relaying and

the cut-set bound for the same value of ǫ is defined as

∆(ǫ) =
CIR

ǫ

CCSB
ǫ

. (16)

Since the cut-set bound is an upper bound that describes

the maximal achievable rate in a network, it is obvious that

∆(ǫ) ≤ 1.

Applying (7) and (15), we get

∆(ǫ) ≤
√

σ2
rd + σ2

sr

2σ2
rd + σ2

sr

=

√
√
√
√
√

(
dsr

drd

)α

+ 1

2
(

dsr

drd

)α

+ 1
, (17)

where we used ln(1 + x) ≈ x for small values of x and

Pr(A) ≈ ǫ. We now see that ∆(ǫ) ∈ [1/
√

2, 1] for γ → 0.

The lower bound (1/
√

2) describes the case when the relay

is placed close to the destination, whereas the upper bound

(1) represents the case when the relay is located close to the

source.

Fig. 4 illustrates the ratio ∆(ǫ) of ǫ-outage capacity of

incremental relaying to the cut-set bound for γ → 0. When

the relay is placed close to the destination, we get the poorest

performance of incremental relaying. When the relay is located

close to the source, incremental relaying with decode-and-

forward is optimal.

B. Extension to K Relays

The calculation of the outage probability of incremental re-

laying for an arbitrary number of relays is involved. Normally,

one would have to investigate all possibilities how information

could be sent from the source over the relays to the destination.

In a network with K relays, this leads to 2K different cuts. We

simplify the calculation by assuming that either all K relays



can decode the source message or not. The outage probability

can then be lower bounded by

pout ≥ Pr(|hsd|2 < γ̃)
K∏

k=1

Pr(|hsrk
|2 < γ̃)

+

K∏

k=1

Pr(|hsrk
|2 ≥ γ̃) Pr(|hsd|2 +

K∑

k=1

|hrkd|2 < γ̃),

where

γ̃ =
2(K+1)R − 1

SNR
. (18)

We see that now the source has to transmit with an initial rate

of (K + 1)R. By applying Lemma 1, we get:

lim
ǫ→0

SNR→0

pout

γ̃K+1
≥

(K + 1)!
∏K

k=1 σ2
rkd +

∏K

k=1 σ2
srk

(K + 1)!σ2
sd

∏K

k=1 σ2
rkdσ2

srk

(19)

This leads to an upper bound on the ǫ-outage capacity of

CIR
ǫ ≤ 1

EK(N)

× log2



1 + SNR
K+1

√
√
√
√

(K + 1)!σ2
sd

∏K

k=1 σ2
rkdσ2

srk
ǫ

(K + 1)!
∏K

k=1 σ2
rkd +

∏K

k=1 σ2
srk



 ,

where EK(N) = 1 +
∑K

k=1 Pr(Ck) and

Ck = {|hsd|2 +
k−1∑

l=1

|hrld|2 < γ̃}. (20)

The event Ck describes the accumulation of SNR at the

destination which is caused by the fact that the relays transmit

in a successive manner. This means that if the accumulated

SNR of the source’s and the first relay’s transmission is not

enough for the destination to decode, then the second relay

transmits. If the accumulated SNR of the source’s, the first,

and the second relay’s transmission is not enough, the third

relay transmits, and so on.

For the cut-set bound, an upper bound on mutual informa-

tion is given by

I ≤ min{log2(1 + (|hsd|2 +

K∑

k=1

|hsrk
|2)SNR)

︸ ︷︷ ︸

BC-cut

,

log2(1 + (|hsd|2 +
K∑

k=1

|hrkd|2)SNR)

︸ ︷︷ ︸

MAC-cut

}, (21)

where we only considered the BC-cut and the MAC-cut and

neglected any mix-terms. With

lim
ǫ→0

SNR→0

pout

γ̃K+1
≤

∏K

k=1 σ2
rkd +

∏K

k=1 σ2
srk

(K + 1)!σ2
sd

∏K

k=1 σ2
rkdσ2

srk

(22)

ǫ-outage capacity then becomes

CCSB
ǫ ≥ 1

1 + Kǫ

× log2



1 + SNR
K+1

√
√
√
√

(K + 1)!σ2
sd

∏K

k=1 σ2
rkdσ2

srk
ǫ

∏K

k=1 σ2
rkd +

∏K

k=1 σ2
srk



 .

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper we derived the ǫ-outage capacity of incre-

mental relaying when repetition coding, which is optimal

in the low SNR regime, is applied and the relays perform

decode-and-forward. We showed that the optimal relay loca-

tion which maximizes ǫ-outage capacity only depends on the

channel parameters and is independent of SNR and outage

probability. We compared our results to the cut-set bound and

demonstrated that the ratio between the ǫ-outage capacity of

incremental relaying and the cut-set bound lies within 1/
√

2
and 1 in the best case scenario. Lastly, we derived lower

bounds on the ǫ-outage capacity for the case of K relays for

incremental relaying and the cut-set bound. In [9] it has been

shown that a bursty version of amplify-and-forward (BAF) is

rate-optimal for low values of SNR for a frequency division

communication model. The performance of the BAF strategy

for incremental relaying is currently under investigation. This

also raises questions with respect to relay selection and power

allocation. Those issues are particularly important for energy-

constrained networks such as ad-hoc and sensor networks.
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