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The communication space is five dimensional: its degrees of freedom are frequency, time
and space. The use of the electromagnetic spectrum depends on these parameters. With fu-
ture applications such as opportunistic overlay access or distributed spectrum monitoring
in mind, it is important to estimate the state of the communication space on the basis of
incomplete or imprecise information. A promising approach are technology centric Cogni-
tive Radio networks. In these networks, nodes cooperate to infer information on spectral
occupancy. This conceptual paper proposes a novel approach for centralized modeling
of the communication space with emphasis on spatial dependencies through the use of a
regression model. The modeling approach is verified with practical measurements.

I. Introduction

The five dimensional communication space is spanned
by the dimensions frequency, time and space1. The
usage of the natural resource electromagnetic spec-
trum varies with these parameters. Access to spec-
trum is heavily regulated in all parts of the world. Tra-
ditionally, the access rules governing spectrum usage
are formulated in terms of frequency ranges, largely
ignoring the two remaining degrees of freedom: time
and space. This historical approach to licensing has
lead to inefficient use of spectrum. E.g., [2] reports an
average load of 5.2 percent in the 3 - 3000 MHz range,
leaving a lot of room for improvement.

To increase the efficiency in spectrum usage, trans-
missions of an overlay system can take place in trans-
mission opportunities or spectrum holes [3, 4]. Trans-
mission opportunities are unused regions of the com-
munication space spanned by time, frequency and lo-
cation. The detection of spectrum holes has to be ac-
curate to decrease the probability of interference with
other systems. Due to the nature of measurements,
identification of transmission opportunities is always
based on incomplete and imprecise information. Con-
ceptual challenges in radio networks such as the hid-
den node and exposed node problem suggest the use
of cooperative identification of transmission opportu-
nies, i.e., information sharing between wireless termi-
nals.

A centralized modeling approach is considered in
this paper: wireless terminals gather local information

1This work has been presented in part at the IEEE Workshop
on Cognitive Radios, Las Vegas, USA, January 2008 [1]. It has
been expanded to include practical measurement and regulatory
considerations, a conceptual engine description and extended re-
sults.

on their environment (e.g. spectrum usage, location)
and forward this information to a centralized instance,
termed network. The network uses this information
from distributed nodes to build an online model of the
communication space state. This spectral awareness
can then be used to optimize resource allocation.

The remainder of this paper is structured as fol-
lows: after a brief conceptual introduction to spectral
awareness and its applications in this Section, Section
II describes capabilities and requirements for spectral
estimation in a Cognitive Radio (CR) terminal. Sec-
tion III covers centralized modeling of the communi-
cations space. Concluding remarks and a summary of
important research problems form Section IV.

I.A. Scenario

We consider a distribution of wireless nodes con-
nected to a central instance. This central instance is
referred to as network. The scenario is depicted in
Figure 1. All CR terminals are assumed to have an
out-of-band connection to the network2. Furthermore,
the network is aware of the position of each CR ter-
minal. This location awareness is a precondition for
modeling of spatial dependencies and currently under
investigation by numerous researchers [4, 5].

During operation, the CR terminals report infor-
mation relevant to the state of the communication
space to the network. This relevant information is
an estimate of the spectral environment and an esti-
mate of the current CR terminal position, which the
network tracks. Based on the reported information,
the network builds a model of the communication

2The nature of this feedback channel is not considered here
and is in fact a fundamental conceptual issue of CR networks [4].
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Figure 1: Principle of operation. Each node reports an
estimate of its spectral environment to a centralized
instance. The network is aware of the location of each
of the nodes.

space. The resulting model is a physical representa-
tion of spectrum usage (“At a given position, what is
the signal level in a given bandwidth now?”), which
can be transformed into a more abstract representa-
tion (“There is a GSM downlink operating in this fre-
quency range.”) with a-priori information. Modeling
of the communication space leads to spectral aware-
ness of the network, i.e., the the ability to determine
spectral occupancy for a given geographic location,
frequency, and time.

I.B. Related Work

Collaborative spectrum sensing has been proposed be-
fore as a method to optimize the free/in-use decision
of a spatial distribution of nodes monitoring the same
channel in fading conditions [6, 7, 8, 9]. Location
awareness and modeling of the actual physical sig-
nal levels play only a minor role in these publications;
the overall decision is based on a combination of local
hard free/in-use decisions.

Haykin also tackles the problem of radio-scene
analysis by adapting a method from geostatistics [4].
He proposes multivariate spectral analysis of the inter-
ference temperature time series estimate of each ter-
minal to detect spectrum holes in a centralized man-
ner, however, measurements or simulations to back
this approach are not supplied.

Ferris et al. suggest the simpler approach of using
Gaussian process models to represent a given spatial
signal strength distribution [10, 11]. Extending on this
approach, this paper proposes a regression model for
radio-scene analysis in location-aware CR networks.

I.C. Advantages of Centralized Model-
ing

Minimization of mobile unit intelligence decreases
power consumption, required computational re-
sources and cost. Implementing intelligent behaviour
at the mobile terminal is prone to be more expensive
than comparable methods in the network, where com-
putational power is virtually unlimited.

To minimize the amount of data transfered over the
feedback channel to the network a certain amount of
signal processing intelligence is needed at the termi-
nals. The data describing the local spectral environ-
ment need to be reduced to a small symbolic represen-
tation. Finding representations and models that offer a
good compromise in the trade-off between reduction
of power consumption and computational resources,
and hence data reduction, is important. A simple rep-
resentation based on a quantized PSD estimate is pro-
posed in Section II.B.

I.D. Regulatory Considerations and
Added Value

Access to spectrum is strictly regulated in most coun-
tries of the world and subject to international laws and
agreements. A politically acceptable general overlay
access system will most likely have to assure complete
operator control [12]3.

A possibility to realize such a system is a network
of overlay spectrum access stations (shown in Figure
2), run by the respective regulatory agency or subcon-
tracted to a cellular operator, which covers the area
of interest. These stations act as sensors for spec-
tral awareness. The network operator or regulatory
agency can then monitor the whole network and as-
sign or revoke access rights dynamically to assure op-
timal spectrum utilization and minimize unsolicited
interference. Primary users can create a secondary
spectrum market by charging a fee for granting over-
lay access. In view of the potential for improvement
[2], significant added value can be generated.

II. Estimation of Spectral Occu-
pancy at the CR Terminal

Before turning to centralized spatiotemporal model-
ing, the measurement capabilities of the wireless ter-
minal have to be defined. Modeling of the communi-
cation space is modeling of physical quantities, hence

3In [12], Mangold et al. evaluate a simple overlay concept
based on a grant and denial beacon. They thoroughly motivate
operator assisted dynamic spectrum assignment.
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(a) Distributed centralized modeling in a overlay ac-
cess network. A model is run for each area of in-
terest. The spectrum access stations act as sensors
for the spectral environment and collect information
from the CR terminals.
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(b) Principle steps from spectral estimation to cen-
tralized model building. At the terminal, the PSD
estimate is compressed (e.g. by channel segmenta-
tion, quantizing) and then reported to the network.
The network collects the measurements and aggre-
gates them in discrete channels. Each channel is
then modeled separately.

Figure 2: Principle of operation

measurements of the CR terminal have to be made in-
dependent of a specific wireless standard. This im-
plies a three step process at the CR terminal shown in
Figure 2.

In a first step, the CR terminal node measures a
signal level, possibly making use of a-priori informa-
tion (matched filtering, feature detection). In a second
step, this information is aggregated, compressed and
then, in a third step, forwarded to the network. The
network then uses this data to model the communica-
tion space occupancy.

The most general measurement step is spectral es-
timation, an energy based detection strategy.

II.A. Spectral Estimation

Spectral estimation, also known as spectral analysis
or spectrum sensing in a CR context, is the simplest
standard independent detection strategy. The mea-
surement capabilities of a CR terminal with spectrum
estimation comprise three basic steps:

1. Appropriate spectral estimation with respect to
time and frequency resolution,

2. (optional) channel segmentation,

3. spectrum estimate compression (e.g. through
quantization) and reporting.

Maximum Hold

For inherently instationary signals such as communi-
cation signals, spectral estimation algorithms can un-
derestimate the maximum signal level in a given fre-
quency range. E.g., if we choose to average peri-
odograms over the duration of a whole GSM time di-
vision multiple access (TDMA) frame with only one
active burst (cf. Figure 3 and 5), the resulting PSD es-
timate significantly underestimates the maximum re-
ceived power. A comparison with a peak-hold esti-
mate serves as an indicator that the averaging dura-
tion is too long: the estimated variance is higher than
the expected variance for a given algorithm. This fact
can be exploited to adapt spectral resolution, temporal
resolution and window length to the data to get a more
accurate maximum power estimate.

Time - Frequency Resolution

Spectral estimation methods have an inherent trade-
off between time resolution and frequency resolution.
Choosing a long averaging duration results in good
frequency resolution but poor localization of frequen-
cies in time. A short duration on the other hand gives
poor frequency resolution but good localization of fre-
quencies. This is illustrated in Figure 3, a snapshot
of a GSM1800 downlink band. With high tempo-
ral resolution the burst structure and power control is
clearly visible but the channel bandwidth is overes-
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(a) High temporal resolution
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(b) High frequency resolution

Figure 3: Illustration of the influence of the time and frequency resolution choice. The time-frequency plane
shown has a center frequency within the GSM 1800 band at 4 MHz bandwidth. Both planes were computed from
131072 samples based on the Welch method with a Hamming window, yielding a frequency-time resolution of
64× 2048 bins in Figure 3(a) and 2048× 64 bins in Figure 3(b). Note the frequency leakage in Figure 3(a).

timated due to leakage. Choosing a long averaging
duration and hence a high frequency resolution leads
to a good estimate of the channel bandwidth while the
burst structure is blurred. Furthermore, both time and
frequency resolution can be traded against accuracy of
the estimate.

II.B. Data Representation and Report-
ing

The output of the spectral estimation stage is a quan-
tized PSD, essentially a description of channels and
signal levels. Figure 4(b) shows such an estimate. Op-
tional channel segmentation can increase the accuracy
of the PSD estimate, as quantization for data compres-
sion prior to reporting to the network can then be car-
ried out more exactly. With the prior knowledge of the
matched filters, the node can precisely report a single
power estimate per channel and time slot.

III. Centralized Modeling of the
Communication Space

The state of the communication space is the spa-
tiotemporal distribution of signal levels in units of
Watt per Hertz: loosely speaking, a spatial general-
ization of the power spectral density. An equivalent
metric, interference temperature, has been proposed
by the FCC Spectrum Policy Task Force [13]. It is the
choice of the designer of the CR terminal whether to
use the spectrum estimation/energy detection, equiva-
lent to the interference temperature metric, or methods

with increased sensitivity incorporating prior knowl-
edge such as matched filtering. The following spa-
tiotemporal model has to be independent of the power
measurement method chosen.

III.A. Physical Properties of the Wire-
less Communication Channel

The physics of wave propagation, i.e., phenomena
such as attenuation, refraction and reflection, lead to
spatial and temporal dependencies of the electromag-
netic field strength.

For any given center frequency and receiver lo-
cation, two stochastic phenomena dominate the spa-
tiotemporal characteristics of the receiver signal level,
i.e., the absolute values of the complex voltages at the
receiver: fast fading and slow fading, also known as
shadow fading. A third factor, long-distance variation
of the signal level, can be regarded as deterministic
and is described by the path loss between transmitter
and receiver.

Fast fading is the location-independent fast varia-
tion of the signal amplitude and phase, attributed to
varying multi-path propagation due to moving scat-
teres and receiver movements in the order of a wave-
length [14]. The influence of fast fading on the signal
is usually modeled by a Rayleigh or Rice amplitude
distribution [15].

Slow fading is the variation of the local mean power
over distances in the order of tens of wavelengths4.

4Salo et al. [16] distinguish between local shadow fading and
global shadow fading. According to Salo, local shadow fading
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(a) Engine principle. A GP model is run for ev-
ery frequency bin to build a complete spatiotemporal
model of all frequencies in question.
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(b) Report for one measurement cycle: a discretized
maximum PSD estimate with a frequency resolution
of 500 kHz.

Figure 4: A model is run for every frequency bin

Slow fading can be modeled as a lognormal dis-
tributed amplitude [14].

Provided that the transmitter and receiver specific
transmission characteristics (transmitter and receiver
position, power etc.) remain unchanged, the local
long-term average signal level at a given position can
be regarded as constant as it changes slowly over long
periods of time. In wave propagation modeling this lo-
cal long-term average is calculated from the path loss
and the antenna characteristics.

The path loss between two locations depends on
distance and attenuation of the transmission environ-
ment and varies only with large-scale environmental
changes.

To build an accurate generalizable model based on
distributed measurements, these measurements have
to be made independent of the actual receiver struc-
ture. Two significant factors limiting sensitivity are
the individual antenna characteristics and noise fig-
ures. For a mobile receiver antenna orientation is usu-
ally random. Considering only the maximum gain of
an antenna is not enough to characterise its perfor-
mance in practical operating conditions [17]. Mea-
surements are needed to determine the mean effective
gain of a test antenna. The mean effective gain is
defined as the ratio of the mean signal levels at the
test antenna and a reference antenna [17, 18]. In [17]

is the lognormal variation of the received signal amplitude in a
area where path loss is constant. Over distances where path loss
is not constant, the characteristics of shadow fading (mean and
variance) change as well: this is termed global shadow fading.
Marsan et al. [14] use the terms large area lognormal shadowing
and small area lognormal shadowing.

Table 1: Wireless channel phenomena
Type Effects on signal level

fast fading fast temporal variations,

statistics change with

velocity and location

slow fading slow temporal variations,

statistics change spatially

path loss deterministic spatial

variations

antenna characteristics, fast spatiotemporal

orientation variation

Kalliola et al. analyse the effective gain in various in-
door and outdoor scenarios. Mean effective gain val-
ues between −5 dBi for free space and −11 dBi for
operation beside a head model are reported. This ef-
fective loss has to be accounted for in distributed mea-
surements so that spectrum occupancy is not underes-
timated. The individual noise figure of a receiver lim-
its sensitivity, but does not affect the validity of the
model as long as physical quantities are reported.

III.B. Parametric versus non-
parametric modeling

Traditional wave propagation modeling uses a para-
metric model of the communication space. A para-
metric communication space model has the advantage
of representing the physical reality closely, its param-
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eters are number, position and power of transmitters,
antenna characteristics and wave propagation environ-
ment. If these parameters are known, techniques from
wave propagation modeling can be applied to make
coverage predictions. Standard approaches include
simple path loss calculations, simplified diffraction-
based methods, ray tracing and field theoretic calcu-
lations [15]. The type of model used in a given ap-
plication depends heavily on frequency, desired accu-
racy and terrain at hand. Sophisticated models use
terrain information for relatively precise predictions.
Unfortunately, even with these models the standard
deviation of the prediction error is in the order of
10 dB [19] as the physical reality contains too many
unknown factors (e.g. metal contents of buildings,
non-stationary environmental influences such as traf-
fic and weather conditions) to be precise. In practice,
predictions are verified and fine-tuned with measure-
ments [19]. This shows that even very complex mod-
els represent the physical environment inadequately.
A parametric communication space model would have
to estimate the right combination of number of trans-
mitters, antennae characteristics etc. from an infi-
nite number of possibilities. Without a-priori informa-
tion this is infeasible - a communication space model
relying on measurements only is bound to be non-
parametric5.

III.C. Choosing effects to model

The spectral estimation step proposed in Section II re-
sults in a PSD estimate. The PSD does not include
phase information. Accordingly, we are only inter-
ested in modeling receiver signal levels, i.e., the abso-
lute values of the complex voltages at the receiver an-
tenna, and not the complete channel impulse response.

Table 1 shows the different wireless channel phe-
nomena. The communication space model has to pro-
vide means to capture the most significant effects. To
summarize: for a fixed location, there are variations in
the signal level over time due to fading and transmitter
activity. For a fixed moment in time, there are spatial
variations in the signal level due to path loss.

The model should capture only spatiotemporal de-
pendencies directly related to spectrum occupancy.
Hence, we are interested in modeling deterministic
spatial variations due to path loss, spatial statistical

5Even if a direct parametric modeling approach seems infeasi-
ble, it is possible to infer information about locations and number
of transmitters and transmission characteristics in a second step.
A parametric representation of the cause of the communication
space state can be built on top of the non-parametric effect model:
this of interest when monitoring unsolicited interference.

variations due to slow fading on top of path loss, and
transmitter activity. Fast fading is eliminated at the
CR terminal during measurement by averaging.

The concrete local long-term average of the receive
power PR(xR)6 at the receiver location is calculated
with the radiated equivalent isotropic radiated power
PT(xT), transmitter antenna gain GT, receiver antenna
gain GR and path loss D(xT,xR), depending on both
receiver and transmitter location:

PR(xR) = PT(xT) + GT + GR (1)

−D(xT,xR) [dB]

The measured power at the receivers is equivalent to

PM(xR) = PR(xR)−GR + DSF [dB], (2)

where PR(xR) − GR is the variable to be modeled in
this work and DSF denotes slow fading and is equiva-
lent to the measurement noise.

To account for different antenna characteristics, it
is assumed that all measurements are normalized ac-
cording to the mean effective gain of the receiver an-
tenna.

The goal of the model is to capture the effects, not
the cause of spatial spectrum occupation. Separating
the effects from the cause allows for non-parametric
modeling.

Spatial Dependencies

Measurements are only available for distinct loca-
tions. The model should make resonable predic-
tions for locations without measurements, interpolat-
ing from available data. A good interpolation method
should also provide a measure of reliability. The
model should capture deterministic spatial variations
in a path loss component and spatial statistical varia-
tions caused by slow fading.

Gaussian process regression, also known as krig-
ing7, is a modeling method from geostatistics. Us-
ing Gaussian processes (GPs) as a statistical non-
parametric model offers an elegant way to represent
location-dependent spectrum usage.

A key question to be answered is that of spatial cor-
relation between measurements, i.e., the question of
relevancy of observations in one location to neighbor-
ing locations. Spatial correlation of signal strength
measurements has been studied extensively in litera-
ture, c.f. [21, 22] and references therein. These stud-
ies aim at describing the stochastic properties of sig-
nal strength distribution to develop suitable wireless

6Bold script denotes a collection of variables or a vector.
7Named after South African mining engineer D. G. Krige [20].
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channel simulations for different propagation environ-
ments. Extending this idea, it is possible with georef-
erenced statistics, i.e., location aware CR terminals, to
embed measurements into a stochastic framework.

III.D. Regression with Gaussian Pro-
cesses

A Gaussian process (GP) is a set of random variables
denoted by f(xi), any finite number of which have a
jointly Gaussian distribution8 [20].

The value of the underlying latent function at a lo-
cation xi is represented by the GP f(xi). A GP is
defined by its mean

m(x) = E{f(x)} (3)

and covariance function cov(f(xp), f(xq)) =
k(xp,xq),

k(xp,xq) = E{(f(xp)−m(xp))(f(xq)−m(xq))}.
(4)

Without loss of generality, the mean function can be
assumed to be zero. If the covariance function is prop-
erly defined9, a GP can be used as a non-parametric
model for machine learning: an observation (yi,xi)
is thought to be related to the random variable f(xi)
modeling a latent function. With a signal model and
a given set of n observations D = {(yi,xi)|i =
1, ..., n}, the model calculates the posterior distribu-
tion of the GP at a test point.

Predictions with Noisy Observations

The signal model is defined as

y = f(x) + ε, (5)

where ε is additive independent Gaussian noise with
variance σ2

n. Taking into account the additive Gaus-
sian noise, the covariance between the observations
can be written as

cov(yp, yq) = k(xp,xq) + σ2
nδpq , (6)

where δpq denotes the Kronecker delta which is one
iff p = q and zero otherwise.

The n × n covariance matrix Ky of a set of noisy
observations is then

Kyp,q = cov(yp, yq) . (7)

8We follow the function-space view of Rasmussen and
Williams [20].

9The resulting covariance matrix needs to be invertible [20].

Let k(x∗) be the n× 1 vector of covariances between
the training points, i.e., locations at which observa-
tions were obtained, and an arbitrary test point x∗:

k(x∗) = [k(x1,x∗), ..., k(xm,x∗)]
T . (8)

The conditional mean with zero prior mean m(x) and
variance at the test point are then calculated as [20]

µx∗ = m∗(x∗) = k(x∗)T K−1
y y (9)

and

σ2
x∗ = k∗(x∗,x∗) = k(x∗,x∗)− kT

∗ K−1
y k∗. (10)

The regression model is given by (9) and (10). To
make predictions using the model an appropriate co-
variance function has to be specified. This covariance
function is application specific. The principal shape
of the covariance function is chosen based on a-priori
knowledge. The shape still has remaining degrees of
freedom, the so-called hyperparameters. These hyper-
parameters are estimated from the measurement data
as a whole. For a spatial signal strength distribution
model, yi is a measurement at a location xi. Tak-
ing the stochastic properties of shadow fading into
account, an exponential covariance function is an ap-
propriate choice for modeling two dimensional spa-
tial data as shown by Giancristofaro and Gudmundson
[22, 23]:

k(xi,xj) = σ2
f exp

(
(xj − xi)Σ(xj − xi)T

)
+σ2

nδpq

with Σ = diag(1/l2x, 1/l2y) . (11)

A stochastic process with this covariance function is
stationary in space, as it is only a function of the dis-
tance of two locations |xj − xi|. The squared expo-
nential covariance has different characteristic lengths
lx and ly, allowing different correlation properties on
the x and y scale. σf is the GP model standard devia-
tion, σn is the standard deviation of the measurement
noise. All hyperparameters Θ = [lx, ly, σ

2
f , σ2

n]T

need to be estimated from the data. The maximum
likelihood estimate is given by maximizing the like-
lihood log p(y|D,Θ) or equivalently by minimizing
the objective function

f = log |Ky|+ yT K−1
y y, (12)

where y is the vector of all observations. This opti-
mization problem is efficiently solvable by conjugate
gradient descent [20].
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Interpretation of Model Noise and Exem-
plary Measurements

Figure 6 shows the result of GP regression for a chan-
nel of the GSM900 band in contour plots10. The data
is displayed for a varying number of measurements,
made in the GSM900 bands and georeferenced with
GPS accuracy. Areas in which the estimated cumula-
tive model and noise standard deviation uncertainty
exceeds 6 dB are not plotted. In these areas, only
few measurements were made and hence the predic-
tion is uncertain. As slow fading is lognormal dis-
tributed, the GP model works on logarithmic measure-
ment data. The prior mean function is assumed to
be zero, m(x) = 0; the measurement data are cen-
tered to account for this assumption. σ2

n describes
the model noise and the variance of lognormal fad-
ing. The location-independent fast fades are averaged
out during the spectrum estimation and reporting step.

III.E. Extension to Temporal Dependen-
cies

The GP model for spatial dependencies can easily be
generalized to include temporal dependencies. One
has to differentiate between long term dependencies,
which are covered by the model, and short term de-
pendencies of the communication space which are not
included. This has a very practical reason: short term
dependencies cannot be modeled in a centralized man-
ner as this information is lost during the sporadic re-
porting stage. Furthermore, the model describes only
the state of the communication space over, e.g., the
last few minutes. This state can be regarded as current,
but it does provide information about future spectrum
usage. Obviously then, short term communication
space changes have to be dealt with at the terminal.

The centralized model has a temporal resolution ap-
propriate to model longer term dependencies. With
respect to overlay system use, this approach can be
used to opportunistically reuse completely unused fre-
quency ranges, which tend to stay free in certain areas
for longer periods of time.

Long term dependencies

The GP model can be generalized to include long
term dependencies by temporal windowing of mea-
surement data. The underlying assumption, in anal-
ogy to spectral estimation, is that the latent function
modeled by GP regression can be treated as stationary
in the window duration.

10A verification of the model and further details can be found
in [1]

If only limited measurements are available, the sta-
tionarity requirements can be relaxed if the wireless
terminals report only the maximum of all PSD es-
timates to the network. Then, only the maximum
signal level for each channel has to be stationarity.
This eliminates the influence of sporadic waveforms
and separates long-term from short-term dependen-
cies. An example is shown in Figure 5(b).

Short term dependencies

Short term dependencies are communication space
changes not covered by the proposed GP model. Short
term dependencies are, for example, the TDMA burst
structure in a GSM system as shown in Figure 5(a) or
the periodic bursty nature of a RADAR sweep.

In an overlay context, modeling to exploit these
small scale transmission opportunities has to be done
directly at the terminal. Several approaches have been
proposed in literature, e.g., Mangold et al. [24] sug-
gest a histogram based approach, now part of the pro-
posed IEEE 802.11k amendment [25].

If only long-term dependencies are modeled, it is
not guaranteed that, due to the processing delay of
the network, a frequency resource assigned for trans-
mission by the network, is indeed available. An over-
lay terminal has to perform channel sensing regularly
to detect previously inactive primary system transmit-
ters. If an active primary transmission is detected, it
has to back-off and report to the network.

III.F. Model Engine Concept

The spatial spectrum map, if available for different
frequency ranges, can be used to identify transmis-
sion opportunities in frequency and space, i.e, unused
frequency ranges or areas in which the signal level is
below a threshold.

A complete model of the communication space can
be constructed by running several regression models
for different frequency ranges. The spatial resolution
is not discretized a-priori but results from the defined
test point grid. The frequency resolution is chosen
smaller than the smallest channel bandwidth of in-
terest. The time resolution is a compromise between
number of measurements available and stationarity re-
quirements.

For each frequency bin, a GP model is run, yield-
ing a complete representation of the communication
space. Figure 2 and Figure 4 illustrate the proposed
concept. The estimation of hyperparameters can be
based on the fact that the large scale environment is
stationary and averaged over a long period of time.
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Figure 5: Illustration of short term temporal dependencies in the GSM1800 band. The piece of spectrum analyzed
is the same as in Figure 3, this time with a fitting time-frequency resolution (128 frequency bins). The burst
characteristic is clearly visible. Figure 5(b) shows the short term statistics (minimum, maximum and mean with
estimated standard deviation) of the time-frequency plane.

GP regression requires the inversion of a covari-
ance matrix. Matrix inversion is of complexity
O(n3), which makes large models computationally
prohibitive. However, GP regression with a station-
ary covariance functions can also be formulated as fil-
tering with an equivalent kernel and is tantamount to
Wiener filtering [26, 20]. A practical implementation
has to be based on this filtering approach due to per-
formance reasons.

IV. Conclusion and Further Re-
search

Centralized modeling of the communication space is
able to capture spatial and long term temporal varia-
tions of spectrum usage. Gaussian process based re-
gression is an appropriate tool to capture these varia-
tions and provides a measure of confidence for the es-
timate. The regression is based on distributed cooper-
ation of CR terminals, which use spectrum estimation
to infer information about their spectral environment.
The spectral estimation stage was described concep-
tually and the fundamental estimation problems stem-
ming from applying stationary statistics to inherently
unstationary temporal signals were highlighted.

Centralized modeling is a feasible solution to create
spectral awareness in radio networks under the pre-
condition of location awareness. The proposed model
of the communication space can be used to improve
spectral efficiency through overlay use of spectrum
and demand assignment. At the same time it provides

a means to monitor additional inferference.

Research Issues

The key preconditions upon which the proposed
model is built are appropriate spectral estimation and
location awareness11 at the terminal. Fitting algo-
rithms for spectral estimation and channel segmenta-
tion in CR terminals, both in terms of complexity and
accuracy, and radio-frontend design are still subject
to research. Location estimation and tracking in CR
terminals for indoor and outdoor localization without
the use of an explicit positioning system is another
research field where few concrete results are avail-
able. Promising is the adaptation from methods of
autonomous robotics as proposed in [10] and [11].

The ad hoc concept of communication space in-
troduced to motivate physical modeling should be
put on sound mathematical footing. Generalizing the
estimation theory by including a spatial dimension
should yield more theoretical insight into the physics
of communication and shed light on fundamental lim-
itations12.

11Location awareness does not only affect the physical layer.
It has implications for privacy and security and offers new user-
centric applications. An recent overview article about the poten-
tials of location awareness is given by Celebi and Arslan [5].

12To the best of the author’s knowledge, a comprehensive sta-
tistical description of the wireless channel, which includes tempo-
ral and spatial effects, is still missing. Such a model is necessary
to justify all aspects of a non-parametric GP model theoretically.
Georeferenced measurement campaigns could provide the neces-
sary data to build such a model.
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Figure 6: These contour plots show GP regression for models of varying complexity and 2σ < 12dBm, assuming
lx = 40m, ly = 40m with lognormal noise of 3 dB standard deviation.
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Last but not least the GP model itself has to be im-
proved. Spatial non-stationary modeling is likely to
be more accurate in scenarios with different types of
environment [27]. Non-Gaussian noise models might
help to increase the robustness of the model against
outliers [28]. Another important open question is the
robustness against positional noise, neglected in this
study.
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