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Abstract—Although maximal-ratio combining (MRC) has be-
come a widespread diversity-combining technique, its perfor-
mance under interference is still not very well understood.
Since the interference received at each antenna originates from
the same set of interferers, but partially de-correlates over the
fading channel, it exhibits a complicated correlation structure
across antennas. Using tools from stochastic geometry, this work
develops a realistic analysis capturing the interference correlation
effects for dual-branch MRC receivers in a downlink cellular
system. Modeling the base station locations by a Poisson point
process, the probability of a typical dual-branch MRC receiver
being covered by its serving base station is derived. For the
interference-limited case, this result can be further simplified
to an easy-to-use single-integral expression. Using this result,
it is shown that ignoring interference correlation overestimates
the true performance by 3%–10%, while assuming identical
interference levels across antennas underestimates it by <2%. In
both cases, however, the true diversity order of dual-branch MRC
is preserved. Finally, the performance of MRC and selection
combining under spatial interference correlation is compared.

Index Terms—Multi-antenna receivers, maximal-ratio combin-
ing, interference correlation, Poisson point process.

I. INTRODUCTION

Maximal-ratio combining (MRC) is a ubiquitous diversity
combining technique for modern multi-antenna devices such
as smartphones, laptops, or, more recently, vehicular-integrated
communications systems. It is tailored to combating the effects
of channel fading in order to improve link reliability. Like
other diversity combining schemes, MRC suffers performance
losses when non-idealities such as average reception-quality
imbalance [1] and correlation across antennas [2] are con-
sidered. These performance losses become more severe when
(multi-user) interference—typically being the performance-
limiting factor in cellular networks—is taken into account.
This is because interference is usually not equally strong
across antennas since the interferer to per-antenna links un-
dergo un/slightly-correlated fading as well; thereby further
increasing reception-quality imbalance across antennas [3].
Moreover, this imbalance is usually highly dynamic and
entails a complicated correlation structure across antennas
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that depends upon various system parameters including the
locations of interferers. More specifically, the interference seen
at each antenna originates from the same set of interferers,
but partially de-correlates over the fading channel; making a
tractable analysis difficult. A promising way to capture such
complex interference effects, while maintaining tractability, is
to use tools from stochastic geometry [4], [5]. Along several
works in this domain studying the effects of interference
correlation [6]–[10], the performance of multi-antenna MRC
receivers under spatially-correlated interference in decentral-
ized networks was recently characterized in [11], [12]. These
works in particular showed that assuming a simple interference
correlation model—as frequently done in the literature—may
considerably distort the performance prediction of MRC un-
der correlated interference. More specifically, when ignoring
interference correlation, i.e., assuming that interferers originate
from distinct sets for each antenna [13], the true performance
is significantly overestimated. Conversely, assuming identical
interference levels across antennas, as done for instance in
[14], underestimates the true performance of MRC.

In this paper, we consider a downlink cellular system
where dual-antenna receivers employ MRC. Compared to [11],
[12], such an extension to the cellular case is non-trivial
since the interference/reception properties substantially differ
from the case of decentralized networks due to the cell-
association mechanism in cellular networks. Note that the
dual-antenna case is of particular interest in view of the space
and complexity limitations of practical downlink receivers.
Our contributions are summarized below.

Analytical model and coverage probability: We develop
a tractable model for characterizing the cellular downlink
performance of dual-antenna MRC receivers. The model ac-
counts for irregular base station (BS) deployments and relevant
system parameters such as BS density, path loss, fading and
receiver noise. As the key result, we derive the coverage
probability (cf. Definition 1) for a typical dual-antenna MRC
receiver. In the interference-limited case, this result reduces to
an easy-to-use single-integral expression.

Comparison with simpler correlation models: Using the
key result, we analyze the coverage probability gap when em-
ploying popular though simpler correlation models. It is found
that ignoring interference correlation across antennas yields
a 3%–10% higher coverage probability for typical path loss
exponents. In contrast, assuming identical interference levels
across antennas underestimates the true coverage probability
by no more than 2%. This observation thus justifies the use of
the popular full-correlation model in cellular network analysis.



Design insights for dual-branch MRC: The coverage
probability gain over single-antenna receivers monotonically
increases with the target spectral efficiency, and monotonically
decreases with the path loss exponent. For typical operating
points, the improvement ranges from 12% to 67%. The diver-
sity order remains unaffected by interference correlation and
its value is preserved by the two simpler correlation models
discussed in this work. Under spatial interference correlation,
MRC offers a coverage probability gain over selection com-
bining (SC) of roughly 20% at small path loss exponents. For
large path loss exponents, the higher complexity of MRC may
not be justified as SC exhibits similar performance.

Notation: We use sans-serif-style letters (z) for denoting
random variables and serif-style letters (z) for denoting their
realizations or variables. We define (z)+ , max{0, z}.

II. SYSTEM MODEL

We consider a co-channel cellular network in the downlink.
To account for irregular BS deployments typically encoun-
tered in practice, we model the locations xi of BSs by a
stationary planar Poisson point process (PPP) Φ with density
λ [BSs/m2], i.e., {xi}∞i=0 ∈ Φ ⊂ R2. We assume that
users (dual-antenna receivers) are independently distributed
on the plane according to some stationary point process. By
Slivnyak’s Theorem [4], [5] and due to the stationarity of Φ,
we can focus the analysis on a typical receiver/user located
at the origin. All transmitted signals undergo a distance-
dependent path loss of the form ‖ · ‖−α, where α > 2 is the
path loss exponent. We assume independent and identically
distributed (i.i.d) frequency-flat slow Rayleigh fading on all
links. The power fading gain between the ith BS and the nth

antenna of the typical receiver is denoted by hn,i following a
unit-mean exponential distribution.

Users are assumed to associate with the BS providing the
strongest average received power, i.e., with their closest BS.
Without loss of generality, we let the 0th BS be the closest
one to the typical user and denote its distance ‖x0‖ by d.
For notational convenience we define Φ0 , Φ \ {x0}, i.e.,
the set of locations of interfering BSs. Note that conditioned
on x0 = d, Φ0 is a homogeneous PPP on R2 \ b(0, d). We
consider the case of fixed transmit power across all BSs and
assume that interference is treated as white noise. We denote
by SNR the transmit-signal-to-noise ratio. The (transmit-power
normalized) interference power experienced by the typical user
at the nth antenna can then be written as

In ,
∑

xi∈Φ0

hn,i‖xi‖−α. (1)

Receivers use MRC to coherently combine the signals
received at the two antennas. We assume that they can per-
fectly estimate not only the instantaneous channel but also
the current interference-plus-noise power at each antenna.
Following [15], the MRC weight corresponding to the nth

antenna is then proportional to
√
hn,0/(In+SNR−1). The post-

combiner signal-to-interference-plus-noise ratio (SINR) under

MRC at the typical user then takes the form [11], [12]

SINRMRC ,
h1,0d

−α

I1 + SNR−1 +
h2,0d

−α

I2 + SNR−1 . (2)

Note that, although the fading gains hn,i are mutually indepen-
dent across n, i, the interference terms I1 and I2 are correlated
due to the common locations of interferers.

III. COVERAGE PROBABILITY ANALYSIS

In this section, we study the downlink performance of the
typical dual-antenna MRC receiver.

Definition 1 (Coverage Probability Pc). The coverage prob-
ability is the probability of the SINR exceeding a predefined
coding-/modulation-specific threshold T > 0, i.e.,

Pc , P (SINR > T ) . (3)

In the next subsection, we consider the setting described in
Section II, which models the exact interference correlation.

A. Analysis with Exact Interference Correlation Model

The next result characterizes the typical downlink perfor-
mance of dual-antenna MRC receivers in a cellular network.

Theorem 1 (Pc,MRC for Dual-Antenna MRC). The coverage
probability for a typical dual-antenna MRC receiver is

Pc,MRC = −
∫ ∞

0

2πλd

∫ ∞
0

e−
dα

SNR
(T−z)+

× ∂

∂w

[
e−

dα

SNR
w e−λπd

2A(z,w)
]
w=z

dz dd, (4)

where

A(z, w) ,
(T−z)+

(T−z)+−w 2F1

(
1,− 2

α , 1−
2
α ;−(T − z)+

)
− w

(T−z)+−w 2F1

(
1,− 2

α , 1−
2
α ;−w

)
(5)

and 2F1(a, b, c; z) is the Gauss hypergeometric function [16].

Proof: See Appendix A.
For certain integer α, A(z, w) in (5) can be expressed

through elementary function using identities of the Gauss
hypergeometric function [16], e.g., 2F1

(
1,− 1

2 ,
1
2 ;−u

)
= 1 +√

u arctan
√
u for α = 4. For general α, (4) can be easily

evaluated using standard numerical softwares.
Well-designed dense cellular networks typically operate in

the interference-limited regime (SNR → ∞). In this case, the
effect of receiver noise can be ignored, thereby yielding a
simplified expression for Pc,MRC.

Corollary 1 (Interference-limited Pc,MRC for Dual-Antenna
MRC). In the absence of noise (SNR → ∞), the general
expression in Theorem 1 reduces to

Pc,MRC =
1

2F1

(
1,− 2

α , 1−
2
α ;−T

) + B(α, T ), (6)

where B(α, T ) is defined in (7) at the top of the next page.

Interestingly, the coverage probability is independent of the
BS density λ, which is consistent with [17]. Fig. 1 shows the
coverage probability Pc,MRC of (6) for different α. It can be



B(α, T ),

∫ T

0

2T − 4z − (1 + z)
(
(T (2 + α)− z(4 + α))2F1

(
1,− 2

α , 1−
2
α ;−z

)
+ α(z − T )2F1

(
1,− 2

α , 1−
2
α ;−T + z

))
α(1 + z)

(
z 2F1

(
1,− 2

α , 1−
2
α ;−z

)
+ (−T + z) 2F1

(
1,− 2

α , 1−
2
α ;−T + z

))2 (7)

seen that the analysis perfectly matches the simulation results.
Furthermore, Pc,MRC monotonically increases with α as a result
of reducing the impact of far interfering BSs.

Remark 1. The first summand in (6) corresponds to the
coverage probability for the single-antenna case. This, in turn,
means that B(α, T ) in (6) fully characterizes the coverage
probability gain of dual-antenna MRC in cellular networks.

B. Comparison with Simpler Interference Correlation Models

In this section, we characterize the performance of MRC un-
der two popular though simpler correlation models frequently
used in the literature. Using the results from Section III-A, the
validity of these models will be discussed in Section IV.

1) No-Correlation Model: A commonly made assumption
to maintain analytical tractability is to assume that I1 and
I2 are uncorrelated, i.e., the interferer locations in I1 and
I2 originate from two separate independent point processes.
Under this assumption, we next derive the corresponding
coverage probability denoted by PNC

c,MRC.

Proposition 1 (Coverage Probability PNC
c,MRC). The coverage

probability for a typical dual-antenna MRC receiver in the
no-correlation model is

PNC
c,MRC = −

∫ ∞
0

2πλd eπλd
2

∫ ∞
0

e−
dα

SNR
(T−z)+

×e−πλd
2
2F1(1,− 2

α ,1−
2
α ;−(T−z)+)

× ∂

∂w

[
e−

dα

SNR
we−λπd

2
2F1(1,− 2

α ,1−
2
α ;−w)

]
w=z

dz dd. (8)

Proof: See Appendix B.
By comparing the mathematical form of the inner integrals

in (8) and (4), the influence of correlated interference becomes
apparent: While in (8) the inner integral reduces to the well-
known convolution formula for sums of two independent
random variables [18], this is not the case in (4) since A(z, w)
cannot be further simplified to a similar convolution form.

2) Full-Correlation Model: Another technique used in the
literature to simplify the analysis is to assume that I1 and I2
are fully correlated, i.e., the fading gains h1,i and h2,i are
no longer independent and yield the same realizations for all
i ∈ N>0. Under this assumption, the corresponding coverage
probability PFC

c,MRC can be derived for an arbitrary number of
antennas as shown next.

Proposition 2 (Coverage Probability PFC
c,MRC). The coverage

probability for a typical N -antenna MRC receiver in the full-
correlation model is

PFC
c,MRC =

N−1∑
n=0

(−1)n

n!

∫ ∞
0

2πλd
∂n

∂sn

[
e−

dα

SNR
sT

× e−λπd
2
2F1(1,− 2

α ,1−
2
α ;−sT)

]
s=1

dd. (9)
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Fig. 1. Coverage probability for different path loss exponents α. Marks
represent simulation results.

Proof: See Appendix C.
Without receiver noise (SNR→∞), (9) simplifies to

PFC
c,MRC =

N−1∑
n=0

(−1)n

n!

∂n

∂sn

[
1

2F1

(
1,− 2

α , 1−
2
α ;−sT

)]
s=1

. (10)

C. Comparison with Selection Combining

Strict complexity constraints of mobile devices may some-
times prevent the use of MRC, allowing only for combining
schemes with low complexity. One such wide-spread technique
is SC, in which the antenna providing the highest instantaneous
SINR among all others is chosen. Unlike in the noise-limited
scenario, the relative performance between MRC and SC under
spatially-correlated interference is not well understood. For
interference-limited decentralized networks, the performance
of MRC and SC under spatially-correlated interference was
recently compared in [11]. We next extend this comparison to
the cellular network case.

Theorem 2 (SC Coverage Probability Pc,SC). The coverage
probability for a typical N -antenna SC receiver is

Pc,SC =

N∑
n=1

(−1)n
(
N

n

)∫ ∞
0

2λπd e−
dαT
SNR

n

× exp

{
− λπd2

(
T 2/α

Γ(n) Γ
(
1− 2

α

)
Γ
(
n+ 2

α

)
+

2
αT
−n

n+
2
α

2F1

(
n, n+ 2

α , n+ 2
α + 1;− 1

T

) )}
. (11)

Proof: Due to space limitations, we present a proof
sketch. We follow the same procedure as in the proof of



Theorem 1 in [6] to obtain the joint success probability at
N antennas for a fixed d. Here, we exploit the fact that the
term related to the receiver noise can be moved outside the
Φ0-expectation. After computing the joint success probability,
we invoke [6, Eq. (8)] and finally average over d.

When receiver noise can be ignored, the expression in (11)
reduces to

lim
SNR→∞

Pc,SC =

N∑
n=1

(−1)n
(
N

n

)(
T 2/α

Γ(n) Γ
(
1− 2

α

)
Γ
(
n+ 2

α

)
+

2
αT
−n

n+
2
α

2F1

(
n, n+ 2

α , n+ 2
α + 1;− 1

T

))−1

. (12)

IV. MODELING AND DESIGN INSIGHTS

Due to limited space, the next discussions will be restricted
to the interference-limited case (SNR → ∞), which applies
to dense cellular networks. Discussing the joint impact of
receiver noise and interference is left for possible future work.

We first analyze the gain of dual-branch MRC over single-
antenna receivers in terms of relative coverage probability
increase. Using Remark 1, the relative increase can readily be
obtained as B(α, T )/2F1

(
1,− 2

α , 1−
2
α ;−T

)
. Fig. 2 shows the

relative coverage probability increase over the path loss α and
the SINR threshold T . The improvement obtained by MRC is
maximal for small α and monotonically decreases with α. This
is because, for smaller α, the interference is no longer domi-
nated by a few nearby BSs but by many—possibly far—BSs.
Consequently, the set of effective interferers becomes large,
which, in turn reduces the correlation across the antennas,
and hence improves the performance of MRC. Interestingly,
the coverage probability improvement converges to a non-
zero constant as T increases, although in the interference-free
case the improvement (measured in 1-outage probability) is
known to tend to zero [19, 7.2.4]. For typical operating points
(3 < α < 5 and T > −6 dB), the improvement obtained by
MRC is between 12%–67%.

Figure 3 shows the coverage probability gap for the two
simpler correlation models for different α. The gap is defined
as δ , PNC

c,MRC/Pc,MRC − 1 (δ , PFC
c,MRC/Pc,MRC − 1) for the

respective correlation model. First, it can be seen that both
models reflect the true performance at small T , i.e., at small
target spectral efficiencies. For T > 0 dB, the no-correlation
model yields a significantly optimistic performance prediction
(coverage probability gap is 3%–10%), depending on α. In
contrast, the full-correlation model slightly underestimates the
true performance (Pc gap < 2%). The smaller gap of the
full-correlation model was already reported in [12] and is
reconfirmed in this work for the cellular network case.

Figure 4 illustrates the outage probability (1-coverage prob-
ability) for the exact, no-correlation and full-correlation mod-
els for different α. It can be seen that the simpler correlation
models preserve the true diversity order for dual-antenna
MRC. Interestingly, the diversity order (which is equal to two)
remains unaffected by the fact that interference is correlated
across antennas. This is in contrast to the diversity analysis for
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Fig. 3. Coverage probability gap of no-correlation and full-correlation model
for different path loss exponents α.

decentralized networks, where interferers may be closer than
the desired transmitter [11].

Figure 5 shows the relative Pc gain of MRC over SC for the
three interference models and for different α. In accordance
with [12], the superiority of MRC increases as α becomes
small, i.e., when interference is more severe. For α = 3, the
gains are between 10%–20%, while for α = 5 the gains are
between 5%–11% for practically relevant T (e.g., T > −5 dB
for LTE). We thus conclude that for large path loss exponents
and low target spectral efficiencies, the higher complexity
of MRC might not be justified as SC achieves comparable
performance. It can also be observed that, depending on α,
the much simpler interference correlation models result in a
considerably distorted performance comparison for practically
relevant T . In particular, the no-correlation model significantly
overestimates the gain of MRC over SC at high path loss
exponents (by a factor of two at α = 5 and T = 12 dB).
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V. CONCLUSION

We presented an analytical framework for analyzing the
impact of spatial interference correlation on the downlink
performance of dual-antenna MRC receivers in a cellular
network. Using tools from stochastic geometry, we derived the
coverage probability for a typical dual-branch MRC receiver.
Using the theoretical results, we discussed related modeling
and design aspects of potential importance to designers of
commercial diversity-combining techniques. Future work may
include an extension to the case of more than two antennas at
the MRC receiver and multiple antennas at the base stations.
Another useful direction of future work is to evaluate the
downlink rate achievable per user accounting for the load on
each base station.

APPENDIX

A. Proof of Theorem 1

Conditioning (2) on a fixed distance d to the serving BS
yields

Pc,MRC(d) = P
(

h1,0d
−α

I1 + SNR−1 +
h2,0d

−α

I2 + SNR−1 ≥ T
)
. (13)

The probability in (13) for a given link distance d was recently
derived in [12] and can be written as [12, Eq. (35)]

Pc,MRC(d) = −
∫ ∞

0

e−
dα

SNR
(T−z)+ ∂

∂w

[
e−

dα

SNR
w

×EΦ0

[ ∏
xi∈Φ0

Eh1,i,h2,i

[
e−d

α‖xi‖−α((T−z)+h1,i+wh2,i)
]] ]

w=z

dz,

(14)

where we have exploited the independent-fading property.
Since h1,i and h2,i follow a unit-mean exponential distribution
for all i ∈ N0, the expectation with respect to the fading gains
can be computed as

Eh1,i,h2,i

[
e−d

α‖xi‖−α((T−z)+h1,i+wh2,i)
]

= Eh1,i

[
e−d

α‖xi‖−α(T−z)+h1,i
]
× Eh2,i

[
e−d

α‖xi‖−αwh2,i
]

(a)
=

1

1 + dα‖xi‖−α(T − z)+

1

1 + dα‖xi‖−αw
, (15)

where (a) follows from the Laplace transform for expo-
nential random variables [18]. Inserting (15) back into (14)
and invoking the probability generating functional (PGFL)
E
[∏

xi∈Φ∩A 1−∆(xi)
]

= exp(−λ
∫
A

∆(x) dx) for homoge-
neous PPPs [4], [5], the outer expectation over Φ yields

exp

{
− λπ

∫ ∞
d

2r
(

1− 1

1 + dαr−α(T − z)+

× 1

1 + dαr−αw

)
︸ ︷︷ ︸

, ξ(r)

dr

}
. (16)

To evaluate the integral in (16), we apply a partial fraction
decomposition to ξ(r) and obtain

ξ(r) = 1−
(T−z)+

(T−z)+−w

1 + dαr−α(T − z)+
+

w
(T−z)+−w

1 + dαr−αw
. (17)

Inserting (17) into (16) and using the substitution t = dαr−α,
we get, after carefully evaluating the integral,

EΦ0

[ ∏
xi∈Φ0

Eh1,i,h2,i

[
e−d

α‖xi‖−α((T−z)+h1,i+wh2,i)
]]

= exp
{
−λπd2

(
(T−z)+

(T−z)+−w 2F1

(
1,− 2

α , 1−
2
α ;−(T − z)+

)
− w

(T−z)+−w 2F1

(
1,− 2

α , 1−
2
α ;−w

)
− 1
)}

. (18)

Substituting (18) back into (14), we obtain a single-integral
expression for the conditional probability Pc,MRC(d). To obtain
the final result, Pc,MRC(d) needs to be averaged over d,



which has a Rayleigh probability density function fd(d) =
2λπde−λπd

2

[5]. The result then follows by observing that
the e−λπd

2

term from fd(d) and the last summand in the exp-
term of (18) cancel each other.

B. Proof of Proposition 1

Recall that in the no-correlation model the interferer loca-
tions originate from different point processes, say Φ0 and Φ′0,
for each of the two antennas. Hence, we can rewrite (14) as

PNC
c,MRC(d) = −

∫ ∞
0

e−
dα

SNR
(T−z)+

×EΦ0

[ ∏
xi∈Φ0

Eh1,i

[
e−d

α‖xi‖−α(T−z)+h1,i
]]

× ∂

∂w

e− dαSNRw EΦ′0

 ∏
xi∈Φ′0

Eh2,i

[
e−d

α‖xi‖−αwh2,i
]

w=z

dz,

(19)

Again invoking the PGFL for PPPs and the Laplace transform
for exponential random variables, the expectation over Φ0

yields,

EΦ0

[ ∏
xi∈Φ0

Eh1,i

[
e−d

α‖xi‖−α(T−z)+h1,i
]]

= exp

{
− λπ

∫ ∞
d

2r
(

1− 1

1 + dαr−α(T − z)+

)
dr

}
= exp

{
− λπd2

(
2F1

(
1,− 2

α , 1−
2
α ;−(T − z)+

)
− 1
)}
. (20)

Analogously, the expectation over Φ′0 can be computed as
exp{−λπd2

(
2F1

(
1,− 2

α , 1−
2
α ;−w

)
− 1
)
}. Averaging over

the distance d yields the final result.

C. Proof of Proposition 2

The full-correlation model requires the interference terms at
the N antennas to be equally-strong, i.e., I1 ≡ . . . ≡ IN . The
SINR then takes the form

SINRFC =
d−α

∑N
n=1 hn,0

I1 + SNR−1 , (21)

where
∑N
n=1 hn,0 follows a chi-square distribution with 2N

degrees of freedom [19]. Hence, the coverage probability
conditional on d = d can be written as

PFC
c,MRC(d) = P

(
N∑
n=1

hn,0 ≥ dαT
(
I1 + SNR−1

))
(a)
= E

[
N−1∑
n=0

1

n!

(
dαT

(
I1 + SNR−1

))n
e−d

αT(I1+SNR−1)

]
(b)
=

N−1∑
n=0

1

n!
E
[(
dαT

(
I1 + SNR−1

))n
e−d

αT(I1+SNR−1)
]

(c)
=

N−1∑
n=0

(−1)n

n!

∂n

∂sn

[
LdαT (I1+SNR−1)(s)

]
s=1

, (22)

where (a) follows from conditioning on I1 and evaluating the
probability with respect to

∑N
n=1 hn,0, (b) is a consequence

of the linearity of the expectation and (c) follows from the
differentiation correspondence for Laplace transforms [18].
The Laplace transform LdαT (I1+SNR−1)(s) is obtained as

LdαT (I1+SNR−1)(s)

= e−
dα

SNR
sTE

[
e−sd

αT I1
]

= e−
dα

SNR
sTEΦ0

[ ∏
xi∈Φ0

Eh1,i

[
e−sd

αTh1,i‖xi‖−α
]]

(20)
= e−

dα

SNR
sT e
−λπd2

(
2F1

(
1,− 2

α ,1−
2
α ;−sT

)
−1

)
. (23)

Substituting (23) back into (22) and averaging over d yields
the final result.
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