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Abstract: In this paper a method for performing UWB radar time domain simulations

is explained and simulation results are demonstrated. The given results are compared

to measurements and the simulation errors are discussed. This constitutes a first step

towards development of coherent signal processing techniques for UWB radar.

1. Introduction

Ultrawideband (UWB) impulse radar uses non-sinusoidal transient signals, which makes time

domain analysis a very insightful method to study system behaviour. In this work, a simula-

tion model based on time-domain processing for UWB impulse radar is presented and validated

with measurements. This model is applicable to the analysis of coherent signal processing tech-

niques, such as e.g. correlation receiving.

2. System Model

Considering a bistatic impulse radiating UWB radar, which illuminates a stationary target, the

methods of linear system theory and the concept of power waves [1] allow modeling the time

domain radar link in terms of impulse responses (IRs) as explained in [2]. To account for both

co- and cross-polarization, a matrix-vector notation as in [2] is introduced. The transmitted and

received signals are modeled as two-element-vectors

u(t) =

(

uh(t)

uv(t)

)

, (1)

where the first element is the horizontally polarized component and the second the vertically

polarized component of the signal. This is denoted by the superscripts h and v, respectively.



Furthermore, each functional block in the transmission chain is modeled using a 2 × 2 matrix,

where each element represents one specific polarization coupling:

h(t, θ, φ) =

[

hhh(t, θ, φ) hhv(t, θ, φ)

hvh(t, θ, φ) hvv(t, θ, φ)

]

. (2)

The first letter in the superscripts denotes the polarization of the originating field, the second that

of the receiving site. The angles θ and φ are the angles in azimuth and elevation, respectively.

With this notation and ( · )T denoting the matrix transpose, the UWB radar link in time domain

can be modeled as

urx(t) =
1

2πc

√
Zrx√
Ztx

h
T
rx(t, θrx, φrx) ∗

[

hcpl(t) + hcr(t) ∗ hsc(t, θi, φi, θs, φs) ∗ hcf(t)
]

∗ htx(t, θtx, φtx) ∗
∂

∂t
utx(t) + n(t) (3)

with ∗ denoting the convolution operation, which is defined for matrices analogous to matrix

multiplication. The voltage signal at the receiving antenna ports is urx(t) and the generator

signal at the input of the transmit antenna is utx(t). The impedances at the antenna ports Zrx and

Ztx are assumed to be frequency independent and equal for both polarizations. The derivation

results from the reciprocity theorem [3, 4, 5] and c is the speed of light. The IRs of transmit and

receive antenna are htx(t, θtx, φtx) and hrx(t, θrx, φrx), the IRs of forward and return channel are

hcf (t) and hcr(t) and the IR of the target is hsc(t, θi, φi, θs, φs). Furthermore, hcpl(t) represents

the transmitter-receiver coupling and n(t) is the additive noise term. To account for the angular

dependencies, the following angles have been defined:

• main beam angle of transmit antenna: θtx, φtx,

• incident angle on target: θi, φi,

• scattering angle from target: θs, φs,

• incident angle on receive antenna: θrx, φrx.

The model along with the used nomenclature is depicted in Fig. 1.

To evaluate (3), the coupling signal hcpl(t) is assumed to be stationary and thus can be esti-

mated using an experimental setup in the absence of a target and averaging over a large number

of measurements. The assumption of stationarity holds as long as temperature stays constant

and direct current drift is suppressed. The antenna IRs htx(t, θtx, φtx) and hrx(t, θrx, φrx) are

derived by inverse Fourier transform from transfer functions measured in an anechoic chamber.

To assure that the channel can be modeled as single path line-of-sight free space, the measure-

ment is set up such that the next reflecting structure is further away than the distance between



Figure 1: Bistatic full polarimetric system model

target and antenna plus length of the transmitted pulse. Because of a symmetrical measurement

geometry, forward and return channel IRs are assumed to be identical

hcf (t) = hcr(t) =
1

r + 1
δ
(

t− r

c

)

[

1 0

0 1

]

, (4)

where r is the distance between target and antenna and δ( · ) the dirac delta function to model

the delay. The term 1
r+1

is a modified path loss function to eliminate the singularity at r = 0.

This modification leads to slight amplitude under-estimation.

Following the procedure above to get the necessary IRs, (3) and (4) can be used together with a

given target impulse response hsc(t, θi, φi, θs, φs) to calculate the expected received signal urx(t)

for a given generator waveform utx(t). This allows analyzing and further processing of these

signals.

3. Validation

The model is validated by comparing simulation results for specific target IRs of a flat metal

surface and a water surface with measurement results. The IRs are modeled analytically based

on electromagnetic scattering theory [6].



The transmitted pulse shape utx(t) used in the simulation has been obtained by measurement

from the experimental setup. The horizontal component uh
tx(t) has been set to 0, as only anten-

nas in vertical polarization have been used. The vertical component uv
tx(t) is depicted in Fig. 2.

Both targets have been illuminated perpendicularly to their surface. Thus, according to [6], the
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Figure 2: Vertical component of transmitted pulse

scattering transfer function of the metal plate can be modeled as

Hsc,mp(f, 0
◦, 0◦) = 2

√
πA

f

c0

[

1 0

0 1

]

, (5)

where A is the area of the plate, in our case 0.64 m2. Inverse Discrete Fourier Transform (IDFT)

yields the according impulse response hsc,mp(t, 0
◦, 0◦).

In order to model the scattering impulse response of the distilled water surface with an area of

0.78 m2, a result in [7] is used, which states, that at normal incidence, the scattering IR of a

dielectric disk hsc,dd(t, 0
◦, 0◦) can be modeled as the scattering IR hsc,mp(t, 0

◦, 0◦) of a metal

disk of same area multiplied by the according reflection coefficient Γ:

hsc,dd(t, 0
◦, 0◦) = Γhsc,md(t, 0

◦, 0◦) = ΓF
−1 {Hsc,mp(f, 0

◦, 0◦)} , (6)

where F−1{ · } denotes the IDFT. The reflection coefficient at the border of two perfect di-

electrics with conductivity zero is

Γ =

√
ǫr,1 −√

ǫr,2√
ǫr,1 +

√
ǫr,2

, (7)

where ǫr,1 and ǫr,2 are the permitivities of the first and second dielectric, respectively. The per-

mittivity of air is approximately ǫr ≈ 1. The frequency dependent permittivity of water can be

modeled using the Debye equation [8]

ǫr = ǫr,∞ +
ǫr,0 − ǫr,∞

1 + jωτ
. (8)



The values for the necessary material parameters for distilled water can be found in [8] and are

summarized in Tab. 1.

To single out the surface reflection in the measurement, a plastic canister filled high enough

with distilled water to allow time gating of the surface reflection and thus avoiding problems

with late returns from the bottom has been used.

Table 1: Material parameters of distilled water

Parameter Symbol Value for distilled water

Limit of the relative permittivity at high frequencies ǫr,∞ 4.9

Relative permittivity for static fields ǫr,0 88.2

Relaxation time τ 19.4 ps

The results of both measurements and simulations are depicted in Fig. 3. For the metal plate in

Fig. 3a, the actual pulse matches excellently. In the time bins after the main pulse, the ampli-

tude difference matches. The difference between measurement and model can be explained by

secondary effects, such as surface currents and edge diffraction, which are not modeled by the

flat plate model in (5).

For the water surface in Fig. 3b, the general shape matches well, but apparently the neglected

side effects are stronger than for the metal plate. This could be due to the fact that the scattering

model (6) assumes normal incidence, while in the measurement setup used for this paper there

has been an offset of about 2◦ and on the other hand the model assumes λ ≪
√
A. Here, the

conditions have been λ ≈ 0.1
√
A.

4. Conclusion

In this paper it is shown that a UWB impulse radar system can be modeled in terms of impulse

responses of the various elements in the transmission chain. In a stationary scenario, this leads

to simulation results that coincide well with measurements. With a reference signal that matches

the actual received pulse shape, a correlation receiver can achieve best performance. In realistic

radar scenarios, however, deriving a perfectly matching reference pulse is usually not possible,

especially if, for example, different objects such as different cars are to be detected. Thus,

suboptimal methods for estimation of the reference signal have to be found and their impact on

detection performance has to be analyzed.

The proposed simulation model will allow to analyze the influence of not perfectly matched

reference pulses and thus contribute to the comparison of different signal processing approaches

(e.g. energy detection versus correlation with an abstract reference pulse) which are trying to

cope with the occuring effects.
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(a) Validation using a metal plate with a surface area of

0.64 m
2 at a distance of 1 m as target and both antennas

in vertical polarization.
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(b) Validation using a canister of water with surface area

of 0.78 m2 at a distance of 1 m as target and both anten-

nas in vertical polarization.

Figure 3: Validation of the proposed UWB impulse radar time domain simulator.
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