
Complexity Assessment of Sphere Decoding Methods for MIMO Detection

Johannes Fink∗, Sandra Roger∗, Alberto Gonzalez∗, Vicenc Almenar∗, Victor M. Garcia†
finjo@teleco.upv.es, sanrova@iteam.upv.es, agonzal@dcom.upv.es, valmenar@dcom.upv.es, vmgarcia@dsic.upv.es

∗Instituto de Telecomunicaciones y Aplicaciones Multimedia,
Universidad Politécnica de Valencia, Spain

†Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia, Spain

Abstract— Sphere Decoding (SD) algorithms have been shown to
provide maximum likelihood (ML) detection over Gaussian multiple
input-multiple output (MIMO) channels with lower complexity than
the exhaustive search. These methods are based on a closest lat-
tice point search over a limited search space (hypersphere). There
exist several implementations of these algorithms pursuiting different
search strategies and working either within a set of real numbers, thus
called Real Sphere Decoders (RSD), or performing the search directly
within a set of complex numbers, commonly known as Complex
Sphere Decoders (CSD). In this paper, a performance comparison
between the real and the complex version of the Schnorr-Euchner
(SE) sphere decoder has been carried out in order to find out
which algorithm is the most suitable depending on the application.
Furthermore a recently appeared fixed-complexity version of the SE
decoder (FSD) has been evaluated both in terms of complexity and
performance and the results have been compared with the original
version. In contrast to yet existing complexity analyses, not only the
number of visited nodes has been investigated but also the total
number of operations.

I. INTRODUCTION

Maximum likelihood (ML) detection over Gaussian multiple
input-multiple output (MIMO) channels can achieve the lowest
Bit Error Rate (BER) for a given scenario, but at the expense of
prohibitive complexity [1]. Thus, there is a continuous search
for computationally efficient detectors, such as the Sphere
Decoding (SD) algorithms, which are a set of tree search
detectors with reduced complexity compared to the ML ex-
haustive search detector due to setting a radius constraint [2].
These algorithms perform a closest lattice point search for each
component of the received vector, which is feasible due to the
fact that the constellation set to which the transmitted symbols
belong is known in advance. The existing SD algorithms can
be implemented to operate within a finite set of real numbers,
thus called Real Sphere Decoders (RSD) [3], or to perform
the search directly within a finite set of complex numbers,
commonly known as Complex Sphere Decoders (CSD) [4].
Since these detectors provide the ML solution to the detection
problem, their evaluation focuses only on their complexity.

Recently, a fixed complexity sphere decoder (FSD) derived
from the Schnorr-Euchner (SE) sphere decoder has been
presented in [5]. This detector achieves quasi-ML performance
with the advantage of predetermined runtime, thus it is appli-
cable in time-constrained scenarios.

Various complexity investigations have been done on SD
algorithms, some of them based on analytical evaluations [2],

[6] and others obtained by means of simulations. In this paper,
to evaluate the complexity of the SE sphere decoders, both
methods have been combined; i.e. Monte Carlo simulations,
which are used in order to obtain the number of visited and
explored nodes in the tree, are combined with analytical ex-
amination of the operations carried out per node. Furthermore,
the nodes are counted separately in each tree level, as the
operations needed per node vary according to the level. The
complexity analysis for the FSD turns out to be completely
analytical, since the number of visited nodes is predetermined.
The main focus in this paper lies in the above mentioned
comparison between the CSD and the RSD using different
modulation schemes and in the comparison between the CSD
and the FSD.

II. DATA DETECTION IN MIMO SYSTEMS

Let us consider a block fading MIMO system with nT

transmit antennas, nR receive antennas (nR ≥ nT) and a
signal to noise ratio denoted by ρ. The baseband equivalent
model for this MIMO system is given by

x = Hs + v, (1)

where s represents the baseband signal vector that is transmit-
ted during each symbol period, which is composed of elements
chosen from the constellation Ω consisting of |Ω| points.
Vector x in Eq. (1) denotes the received symbol vector, and v
is a complex white Gaussian noise vector. The Rayleigh fading
channel matrix H is assumed to be known at the receiver.
This matrix is formed by nR × nT complex-valued elements,
Hij , which represent the complex fading gain from the j-th
transmit antenna to the i-th receive antenna. Given the received
signal x, the ML detection problem consists in determining the
transmitted vector s with the highest a posteriori probability,
i.e. solving the following least squares problem:

sML = arg min
s∈ΩnT

‖x−Hs‖2. (2)

A straightforward method for solving Eq. (2) would be
an exhaustive search over the total |Ω|nT lattice points s,
which is commonly known as ML method. However, such an
implementation is cumbersome in practice. For that reason,
among others, the SD techniques appeared.

III. SPHERE DECODING ALGORITHMS

Sphere decoding algorithms are a subset of decision feed-
back tree-search-decoders. They perform the detection of
MIMO data symbols by iterating through a detection tree,
in which the tree levels, also referred to as dimensions,
correspond to the elements of the received symbol. Those
detectors differ basically in the way how they search along
the tree. At this point, the difference between visited nodes
and explored nodes should be pointed out. Any node that is
not discarded is considered a visited node (VN). A subset of
the VN are the explored nodes (EN). These are all VN with
branching child nodes. The goal always is to visit and explore
as little nodes as possible to keep the computational cost low.
Various strategies exist to achieve this goal, all of which can
or even have to be combined in order to work properly:
• Setting a initial radius1 and only searching for solutions

inside the so determined hypersphere.
• Updating the radius constraint whenever a possible solu-

tion is found.
• Ordering the symbols to detect prior to decoding accord-

ing to their post-detection noise amplification.
• Ordering the nodes branching from a parent node incre-

mental with respect to their metric increment as done in
the SE sphere decoder.

The following will be a brief summary of the real and com-
plex SD algorithms using SE node enumeration as described
in [4]. Afterwards the key ideas behind the FSD as proposed in
[5] will be explained. Without loss of generality, it is assumed
that nR = nT = m.

The key idea in SD is doing an exhaustive search over
only those points that lie inside a m-dimensional hypersphere
of radius r, instead of searching over all possible elements
s ∈ Ωm, as it could be naively done to solve Eq. (2). This
constraint can be expressed by

‖x−Hs‖2 ≤ r2. (3)

Therefore, besides choosing an appropriate initial sphere
radius, the core problem that any SD algorithm has to solve
is finding all points s ∈ Ωm that satisfy (3) without having
to examine the distance to all elements in Ωm, as this would
mean no difference to an exhaustive search, speaking in terms
of complexity. This core problem in SD is solved by dividing
the problem of determining which points lie within a m-
dimensional hypersphere into m problems of determining
which symbols lie in a 1-dimensional (real case) or in a 2-
dimensional (complex case) hypersphere. This means that in
the real case it has to be evaluated which numbers of the set
Ω lie in a given interval, whereas in the complex case all
symbols that lie inside a given circle have to be found.

Introducing ŝ = H†x = (H∗H)−1 H∗x and canceling out
constant terms, Eq. (3) may be written as (s − ŝ)∗H∗H(s −

1The initial radius can be determined by means of statistics or by calculating
the distance of the Babai estimate as described in [2].

ŝ) ≤ r2. To break the problem down into subproblems, as
described above, it is necessary to factorize the channel matrix
H using for example the Cholesky factorization, such that
U∗U = H∗H. Exploiting the upper triangular property of the
m×m matrix U leads to

(s− ŝ)∗U∗U(s− ŝ)

=
m∑

i=1

Uii
2

∣∣∣∣∣∣
si − ŝi +

m∑

j=i+1

Uij

Uii
(sj − ŝj)

∣∣∣∣∣∣

2

≤ r2, (4)

where Uij denotes the entry (i, j) of U. The term i = m in
the sum of Eq. (4) only depends on sm, the term i = m− 1
on {sm, sm−1} and so on. Therefore, we can now establish
bounds to find candidate values for sm. All the elements that
lie in between the bounds are called candidates. Their metric
increments µm are calculated and, as proposed in [7], they are
sorted according to increasing metric (SE node enumeration).
Then, depending on the chosen candidate, bounds for sm−1

will be computed. The algorithm continues in this fashion until
one of two things happens: either there are no more candidates
to examine in the current level, or level k = 1 is reached.

If there are no more candidates in the current level, the
decoder backtracks, going up one level at a time until reaching
a level that still contains unexamined nodes2. Then, a new
candidate is chosen and new bounds for the level below are
established and so on.

If the lowest level k = 1 is reached, each chosen candidate
s1 completes the vector s and thus determines a possible
solution. The distance d′ of this solution is calculated and
if d′ is smaller than the distance of any formerly calculated
estimates, we have a new, better estimate for sML. When there
are no more points left in level k = m, the search has finished
and s represents the ML-estimate sML. This decoding process
is illustrated in Fig. 1.

Fig. 1. Tree search in decoding process of a SE sphere decoder.

2A node in level k can be interpreted as a tuple of m − k + 1 chosen
candidates. All nodes in level k = 1 are called leaves and are elements of
Ωm.

Looking at Eq. (4) and defining r′m
2 = r2 and ŝm|m+1 =

ŝm, we find the expressions (5) to (7) that are used by the
detector in order to calculate bounds for each sk, with k =
(m− 1), . . . 1:

ŝk|k+1 = ŝk −
m∑

j=k+1

Uk,j

Uk,k
(sj − ŝj), (5)

µk = Uk,k
2
∣∣sk − ŝk|k+1

∣∣2 , (6)

r′k
2 = r′k+1

2 − µk+1. (7)

denoting ŝk|k+1 as the element k of the skewed received vector
H†x altered by the effect of the so far chosen candidates for
sl, l > k (decision feedback). The µk variable represents
the metric increment caused by the chosen candidate and
the r′k variable can be considered as the the new radius
constraint due to the so far chosen candidates. Once level
k = 1 is reached, the quadratic distance measure d′2 of the
estimate Hs = H (s1, s2, . . . , sm)T to the received vector x
is calculated using Eqs. (6) and (7) as

d′2 = r′m
2 − r′1

2 + µ1 =
m∑

k=1

µk. (8)

To decrease the size of the decoding tree and thus improve
the speed of the detectors, whenever a path is completed, its
final distance measure d′2 is used as new radius constraint for
level k = m and the constraints of lower levels are adjusted
accordingly. This process is referred to as radius update.

Since the manner of how the bounds are established differ
in the two implementations of the SE algorithm considered,
the explanations hereafter will be distinct.

A. Real SE Sphere Decoder (RSD)

Eqs. (5) and (7) provide the bounds in level k for sk:
⌈−r′k

Uk,k
+ ŝk|k+1

⌉
≤ sk ≤

⌊
r′k

Uk,k
+ ŝk|k+1

⌋
, (9)

denoting d·e and b·c as functions that give the next higher or
lower number in the real symbol-space ΩR, respectively.

The RSD is also capable to process complex constellations
if the complex system is converted into its real representation
of double dimensions 2nR×2nT , as described in [8]. For that
reason, m = 2nT in the real case.

B. Complex SE Sphere Decoder (CSD)

In the complex case, the term to be evaluated, derived from
Eq. (4) and using the definitions (5) and (7) in any level k is

∣∣sk − ŝk|k+1

∣∣2 ≤ r′k
2

Uk,k
2 , (10)

which is a circle in the complex plane, centered at ŝk|k+1 with
a radius of r′k

Uk,k
. The complex candidates are easily found

when the symbols lay on a circle, as in PSK-modulations.
Then, the angular bounds of the arc defined by the intersection

of Eq. (10) and the constellation circle have to be found. This
is illustrated for both the QPSK and the 16-QAM case in
Fig. 2, which also shows the division of a QAM constellation
into symbols on nc concentric circles.

I

Q16-QAM

R1

R3

R2

I

Q

s
k|k+1

R

QPSK
s

k|k+1

/U
k,

k

kr' /Uk,kk
r'

Fig. 2. Search disc for a QPSK and a 16-QAM constellation and concentric
circle division of 16-QAM.

Let sk = akeiΘk and ŝk|k+1 = âk|k+1e
iΘ̂k|k+1 , with Θk

being taken from the set of angles of the constellation symbols
and ak being the according radius. Then Eq. (10) becomes for
a given k:

ak
2 + â2

k|k+1− 2akâk|k+1 cos(Θk − Θ̂k|k+1) ≤
r′k

2

Uk,k
2 , (11)

which yields

cos(Θk − Θ̂k|k+1)

≥ 1
2akâk|k+1

[
ak

2 + â2
k|k+1 −

r′2k
Uk,k

2

]
=: η. (12)

Three different cases for η have to be distinguished. If η > 1
the search disc is empty. If η < −1 the disc includes the
entire constellation and if −1 ≤ η ≤ 1, the arc is defined by
|Θk − Θ̂k|k+1| ≤ cos−1 η. Thus the range of allowable points
is delimited by the following bounds3:

⌈
(Θ̂k|k+1 − cos−1 η)

⌉
≤ Θk ≤

⌊
(Θ̂k|k+1 + cos−1 η)

⌋
.

(13)

C. Fixed Complexity Sphere Decoder (FSD)

The Fixed Complexity Sphere Decoder (FSD) was proposed
in [5] to overcome two main problems in SD:

1) The sequential nature of the SE process.
2) The variable detection complexity.
A novel channel matrix ordering is combined with re-

stricting the search space to a very small subset. A search
space restriction denoted by ns = (1, 1, 1, |Ω|) means that
all nodes in level m = 4 are explored, but only the best one
(with the smallest metric) in all lower levels. Thus, a total of
P = |Ω| paths are visited. Furthermore, the candidates are
chosen without calculating bounds.

3Here, the functions d·e and b·c should not be interpreted in the integer
sense but in the sense that they are referring to the next greater / smaller
symbol-angle Θ in the constellation.

In contrast to the SE sphere decoder, the FSD does not
guarantee to find the ML estimate, thus it is a suboptimal
detector. But, as seen in Fig. 3, which shows a performance
comparison between the bit-error-rates (BER) of optimal ML
decoders and those achieved by the FSD for different modu-
lations, its performance comes stunningly close to that of an
optimal ML decoder.

5 10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

10
0

ρ(dB)

B
it

E
rr

or
 R

at
e

ML, 64 QAM
ML, 16 QAM
ML, QPSK
CFSD, QPSK
CFSD, 64 QAM
CFSD, 16 QAM

Fig. 3. BER achieved by the CSD, the RSD and the FSD in 4× 4 MIMO
system using QPSK, 16-QAM and 64-QAM.

IV. COMPLEXITY ANALYSIS

The complexity of tree search algorithms is determined by
two criteria: the number of nodes that have to be examined
and the operational cost per node. In SD, the number of
visited nodes depends on the initial sphere radius and on the
reduction of the the radius constraints due to a radius update.
The operational costs per node depends on the algorithm used.

In the following, we will determine whether working di-
rectly in complex numbers (as the CSD) can effectively reduce
the complexity of SD, or if actually working in the real case
(as the originally proposed RSD [3]) is less expensive. Further-
more we will consider the FSD as a practically implementable
decoder in our comparison to get a feeling for its behavior.
Therefore, we will first analyze the decoding algorithms in
order to get the number of operations executed per visited
node. Then, the mean number of visited and explored nodes
by both SE sphere detectors will be obtained using simula-
tions, thus the yielding results represent an expected average
complexity. In the FSD these node counts are fixed. By adding
up all corresponding products of the node counts and the cost
per node for each level k, the overall complexity values will
be achieved. These results can be useful in deciding on an
appropriate decoder under given circumstances.

A. Counting nodes

Looking at Eq. (5), it becomes obvious that it is not
sufficient to just count the total number of visited and explored
nodes by the detectors, but that it is rather necessary to count
them separately for each level k since the number of operations

that have to be calculated per node increases as k decreases,
which is due to the triangular shape of U. Furthermore, in
order to evaluate the complexity correctly, in the case of the
CSD, we have to count how often the condition −1 < η < 1
holds, since only then bounds have to be calculated as in (13).
The node counts used in the complexity estimations consist of
mean values over a representative number of detection runs.

B. Cost of nodes RSD, CSD

The time-complexity of an algorithm can be counted in
terms of number of clock cycles that are needed to process the
algorithm. Since the number of clock cycles that are needed
to complete a certain operation differs on different hardware
solutions (Digital Signal Processors, Microprocessors, Multi-
Purpose-Processors, FPGAs, ...), we have to set rules how to
calculate the cost, in order to fairly compare the different algo-
rithms. Complex calculations are broken down into number of
real sums and real products. So, one addition of two complex
numbers can be seen as two real additions, and one product of
two complex numbers can be regarded as the equivalent cost
of 4 real products and 2 real sums. All other operations, both
logical ones and arithmetic ones are assumed to be processed
within one clock cycle, as this would be the goal of a fast
specialized hardware implementation. Considering this, the
cost per node for all three algorithms can now be determined.

In Table 1 the Eqs. (5) to (8) have been tagged with a
cost for both the real and the complex case. In addition, for
the real case, Eq. (9) has been assigned cost values and for
the complex case, this has been done for Eq. (12), which is
necessary to get the η variable. For Eq. (13), which is the
equation defining the bounds in level k, it is more difficult
to assign a cost value because of the implementation of the
floor and ceiling functions that work within a set of angles.
These are subroutines with a determined cost, but they are only
evaluated if −1 < η < 1 and thus we also measured how often
this is the case to get a correct mean value of cost. As this
percentage depends on the noise level and the level k of the
decoder, we generated another vector denoted nb additional
to the visited and explored node counts, that represents the
times that the subroutine calculating the bounds is actually
evaluated. The total cost for the functional blocks can be seen
in Table 2.

Additionally to those equations, the algorithms have some
additional cost, for example comparing candidate values with
the bounds and sorting the found candidates according to their
metrics. A summary of all necessary steps and how often they
are carried out in terms of number of visited and explored
nodes can be seen in Table 3.

C. Complexity FSD

The fixed complexity of the FSD can be calculated entirely
analytically: It depends basically on the node distribution ns

and on the constellation size P . For ns = (1, 1, 1,P) we can
calculate the complexity as follows.

Table 1. Cost of used equations / functions expressed in real operations.

Equation /
function

Operational Cost.
RSD CSD

Sums Products Sums Products
(5) 2(m− k) 2(m− k) 6(m− k) 6(m− k)
(6) 1 2 3 3
(7) 1 - 1 -
(8) 2 - 2 -
(9) 2 3 - -

(12) - - 2 5

Table 2. Cost functional blocks of the algorithm.
functional

block
Operational Cost.

RSD CSD
crounding 1 3 + P

nc
;

cbounds 2(log2(P)− 1) +
1 + 3 + 2

22 + 2crounding

Table 3. Subroutines considered for complexity estimation and according
complexity in terms of evaluated equations plus additional cost.

Operation Evaluated Eqs. / additional cost How often

RSD CSD

Calculating initial
bounds for level
m.

(9)
+cbounds

nc times (12)
+5 +

nbcbounds

Once per detection
run.

Calculating metric
increment.

(6) Once per visited
node (VN), inde-
pendent of level k.

Sorting candidates
according to their
metric.

sort(·) Once per explored
node (EN), all its
child nodes have to
be sorteda.

Calculating
ŝk|k+1.

(5) Once per EN.

Retrieving modulo
and angle of
ŝk|k+1.

- 2 Once per EN.

Calculating new
bounds.

(7), (9)
+cbounds

(7), nc times
(12) +5 +
nbcbounds

Once per EN.

Calculating final
distance measure.

(8) Once for every
completed path.

Comparing
selected node
with bounds.

one comparison ≥ Once per VN.

Incrementing state 1 comparison + 1 sum = 2 op. Once per VN.

aAs a reference, we use the complexity of the well-known quicksort
algorithm [9], which performs on average 2 ln(2)n ln(n) ≈ 1.39n ln(n)
comparisons. Since we only count the nodes visited per level k, we calculate
the sorting complexity as if they were all in one list and get thus an upper
limit for the average complexity.

Table 4. Number of carried out operations of the CFSD for different
modulation schemes using a sequential implementation and a fully parallelized
implementation.

Modulation
Number of carried out operations.

sequential V. fully parallelized V.
QPSK 560 140

16-QAM 6272 392
64-QAM 89664 1401

In each level except in k = 1, the detector explores P nodes.
The number of visited nodes is P2 for every level except for
k = m, where it is P . This accumulates to a total of (m−1)P
explored nodes and (m− 1)P2 + P visited nodes.

For every explored node, Eq. (5) has to be evaluated, and for
every visited node, the metric has to be calculated as in Eq. (6).
Furthermore, in all levels except k = m, the minimum among
a number of P metrics has to be found, which means P − 1
comparisons. Moreover, since a total of P paths are completed,
this is also the number of times we have to calculate a final
distance as in Eq. (8). These explanations lead to the following
cost calculations with nEN,k being the number of explored
nodes per level and nEN the total number of explored nodes.
nVN denotes the total number of visited nodes respectively. It
should be noted that the FSD can be implemented based on
the real version of the SE SD or on the complex version, but
we only consider the complex version for our study.

Ctotal =
m∑

k=2

(12(m− k)nEN,k) + (m + 2)P − 1

+ 3nEN + 6nVN + (P − 1)P(m− 1) (14)

V. RESULTS

The results for the complexity of the CFSD, considering a
4 × 4 MIMO system and different modulation schemes can
be seen in Table 4. Since one of the main advantages of the
FSD is its capability to be parallelized using FPGASs, it has
also been calculated the number of clock cycles necessary to
complete the algorithm if it is fully parallelized.

The results for the analysis of the complexity of the SE
sphere decoders in a 4 × 4 MIMO system for different
modulation schemes can be seen in Fig. 4 to 6. The start radius
was set to the end of the scale and all simulations have been
done using 1000 channel realizations and 32000 transmitted
symbols. Fig. 4 shows the total number of operations needed in
average by the CSD and the RSD using a QPSK constellation.
It can be seen that the RSD works slightly more efficiently
for this modulation scheme. In high SNRs the CFSD can
only compete if its parallelized version is used, which requires
more hardware resources. However, we should note, that the
CSFD only needs basic operations (multiplication, addition
and comparison), whereas the CSD needs to calculate the
angle and the absolute value of a complex number and to
evaluate the square-root of a real number.

In Fig. 5, we can see the same comparison for a higher
order orthogonal constellation, in this case 16-QAM. Again the
CFSD outperforms the other detectors in its parallel version
for the obvious reasons. For the CSD and RSD we can see that
their plots cross at around 15 dB. This is due to setting the
initial radius to infinity, since in this case at least one complete
path has to be visited. Note that visiting one full path is less
costly in the RSD than in the CSD, due to the number of
symbols to be searched is log 2|ΩC|, which overcompensates
the double dimensions of the RSD. This means, searching one
full path is less costly in the RSD.

In Fig. 6, the results are displayed for a 64-QAM modu-
lation. The behavior is the same as in Fig. 4 and 5, but now
the drop in complexity when going from 5 dB to 20 dB is
almost 90 %, and for high SNRs, the SE sphere decoders
come in average quite close to the fully parallelized version
of the CFSD, which needs a lot more resources.

5 10 15 20 25
100

200

300

400

500

600

700

800

900

ρ(dB)

T
ot

al
 n

um
be

r
of

 o
pe

ra
tio

ns

CSD
RSD
CFSD sequential
CFSD parallel

Fig. 4. Total number of operations for the CSD, RSD and the CFSD imple-
mented sequentially and parallely detecting in a 4 × 4 MIMO environment
using QPSK.

5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

ρ(dB)

T
ot

al
 n

um
be

r
of

 o
pe

ra
tio

ns

CSD SE
RSD SE
CFSD sequential
CFSD parallelized

Fig. 5. Total number of operations for the CSD, RSD and the CFSD imple-
mented sequentially and parallely detecting in a 4 × 4 MIMO environment
using 16-QAM.

VI. CONCLUSIONS

A method for evaluating the complexity of SD algorithms
not only in terms of number of visited nodes, but also in

5 10 15 20 25 30
0

2

4

6

8

10

12
x 10

4

ρ(dB)

T
ot

al
 n

um
be

r
of

 o
pe

ra
tio

ns

CSD SE
RSD SE
CFSD sequential
CFSD parallelized

Fig. 6. Total number of operations for the CSD, RSD and the CFSD imple-
mented sequentially and parallely detecting in a 4 × 4 MIMO environment
using 64-QAM.

terms of total number of operations has been presented in this
paper. A SD that works directly with complex constellation
symbols (CSD) has been compared with a SD that works
either with real constellations or with the real representation
of complex constellations (RSD), and both of them have
been compared with a fixed complexity tree-search-decoder
(CFSD). The proposed method is applicable to any given
constellation and channel. If one of them changes, the method
only requires a new count of visited and explored nodes by
means of simulations in order to get an adequate complexity
estimation. The results show, that the CSFD can only compete
with the SE sphere decoders if it is implemented in a parallel
manner. The CSD and RSD behave quite similarly, however,
the RSD performs better at high SNR levels and the CSD
outperforms the RSD at low SNR regimes.

REFERENCES

[1] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bölcskei, “An overview
of MIMO communications - a key to gigabit wireless,” Proceedings of
the IEEE, vol. 92, no. 2, pp. 198–218, Feb. 2004.

[2] B. Hassibi and H. Vikalo, “On Sphere Decoding algorithm. Part I, the
expected complexity,” IEEE Transactions on Signal Processing, vol. 54,
no. 5, pp. 2806–2818, August 2005.

[3] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,” Mathematics
of Computation, vol. 44, pp. 463–471, April 1985.

[4] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-
antenna channel,” IEEE Transactions on Communications, vol. 51, no. 3,
pp. 389–399, March 2003.

[5] L. G. Barbero and J. S. Thompson, “Fixing the Complexity of the
Sphere Decoder for MIMO Detection,” IEEE Transactions on Wireless
Communications, vol. 7, no. 6, pp. 2131–2142, 2008.

[6] J. Jalden and B. E. Ottersten, “On the complexity of sphere decoding
in digital communications,” IEEE Transactions on Signal Processing,
vol. 53, no. 4, pp. 1474–1484, 2005.

[7] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved
practical algorithms and solving subset sum problems,” Mathematical
Programming, vol. 66, pp. 181–199, 1994.

[8] T. Kailath, H. Vikalo, and B. Hassibi, MIMO receive algorithms in Space-
Time Wireless Systems: From Array Processing to MIMO Communica-
tions. Philadelphia: Cambridge University Press, 2006.

[9] C. A. R. Hoare, “Quicksort.” Computer Journal, vol. 5, no. 1, pp. 10–15,
1962.

