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Abstract—Coexistence by means of shared access is a cognitive
radio application. The secondary user models the slotted primary
users channel access as a Markov process. The model parameters,
i.e, the state transition probabilities (α, β) help secondary user
to determine the channel occupancy, thereby enables secondary
user to rank the primary user channels. These parameters are
unknown and need to be estimated by secondary users for each
channel. To do so, the secondary users have to sense all the
primary user channels in every time slot, which is unrealistic for
a large and sparsely allocated primary user spectrum. With no
other choice left, the secondary user has to sense a channel at
random time intervals and estimate the parametric information
for all the channels using the observed slots.

I. INTRODUCTION

Cognitive Radio (CR) as introduced by Mitola in [1] is a

paradigm shift, which integrates intelligence into the radio

system. Bringing cognition into the existing radio system

allows the allocated spectrum to be used more efficiently [2]. A

typical scenario is where Secondary Users (SUs) and Primary

User (PUs) coexist through sharing, i.e, SUs harvest spectrum

holes inside PU spectrum. Without any cooperation, each SU

follows the slotted medium access made by the PU over its

channels through sensing.

SU considers the discrete time discrete state Markov process

to model the PU channel access [3]. The state transition prob-

abilities as model parameters provide information about the

channel occupancy, which enables SU to rank the PU channels

and detect the spectrum holes in an efficient way. In this

way, each SU could exercise Reinforcement Learning (RL)

for medium access. RL constitutes of two phases: exploration

and exploitation [4]. In the exploration phase, SU gathers

occupancy information for the PU channels and utilizes it for

its transmission in the exploitation phase.

Markov process is relatively simple model to describe slotted

medium access, although, due to its analytical tractability, it is

mostly considered to perform analysis [5]–[7]. [5] ensures the

fastest discovery of the idle channels at the SU. [6] describes

the process of selecting the PU channels for sensing followed

by their access as the multi-armed bandit problem. These

approaches assume the knowledge of the model parameters

at the SU, which constitutes only the exploitation phase. The

exploration phase that comprises of determining the model

parameters using Maximum Likelihood Estimation (MLE) for

a given channel is done in [7]. According to [7], the transition

probabilities can be estimated when a channel is sensed in

consecutive slots. Following this approach, the estimation of

parameters for each channels requires SU to sense all the

channels at each slot. That means for a given channel a

slot sequence at SU is obtained by observing all slots. The

slot sequence is sufficient for the estimation of the model

parameters, is defined as complete dataset.

However in a practical scenario, the sparse location of the PU

channels and the slot duration constrain SU to sense only a

limited number of channels at each slot. From the SU perspec-

tive, this is equivalent to a situation where a slot sequence for a

given channel is obtained by observing non-consecutive slots,

is defined as incomplete dataset. This makes the estimation

of the model parameters using MLE analytically not possible.

Dempster et al. [8] proposed Expectation-Maximization (E-

M) algorithm, an iterative approach to find the MLE for

incomplete dataset.

As per authors’ knowledge, E-M approach in the literature

has been limited to Hidden Markov model and Gaussian

Mixture model [9], hence, never applied to discrete time

discrete state Markov process with incomplete dataset. E-M

algorithm leads to an optimal solution, but it is applicable only

to the probabilistic models with exponential families. Also,

the likelihood function of the incomplete dataset has multiple

modes. Thus, E-M algorithm like any other hill climbing

algorithm, may not converge to a global maximum.

The paper formulates the problem of parameter estimation

for a given channel following the Markov process when only

non-consecutive slots are observed. Secondly, we derive an

analytical expression of likelihood function for the Markov

process as an exponential family, and apply the E-M algorithm

for estimating the model parameters for the incomplete dataset.

Simulations are performed to validate the E-M algorithm.

Finally, we apply least squared error algorithm to find the

global maximum. However to keep the discussion limited and

yet focused, the paper considers perfect sensing, i.e probability

of false alarm Pfa = 0 and probability of detection Pd = 1.

The rest of the paper is organized as follows: Section II

explains the system model. Section III presents the analytical

expression for the MLE for the complete and incomplete

dataset for the underlying Markov process. For the incomplete

data set, it implements an iterative approach to determine

MLE. The theoretical analysis is supported by Monte Carlo

simulations in Section IV followed by conclusion in Section

V. The definition of the exponential family in the natural form
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Fig. 1. 2-state discrete Markov channel model

for the complete and incomplete dataset, and the expression of

the likelihood function for Markov process as an exponential

family are presented in Appendix.

II. SYSTEM MODEL

We consider N PU channels. Two consecutive slots of a

given channel n follow a discrete state Markov chain as shown

in Fig.1 with transition probabilities (α, β) ∈ [0, 1] [3]. Each

channel is independent and has different set of parameters

(αn, βn), however to ease the notations, subscript n is dropped

in rest of the paper. Medium access is synchronized and

slotted, i.e, the channel stays in a given state (Occupied = 0,

1 = idle) for the complete slot duration. The probability that

a given channel is in occupied state at slot, at time index t, is

defined as the channel utilization probability u = P (xt = 0).
Let T be the number of observed slots for a channel, then

T0 :=
T∑

t=2

✶{xt|xt−1=0}

T1 :=
T∑

t=2

✶{xt|xt−1=1}

(1)

are the number of slot transitions with previous state (xt−1 =
0) and (xt−1 = 1), then T0 = T ·(1−u) and T1 = T ·u. ✶{·|·}

represents the indicator function for a conditional event {·|·}.

Markov process can be represented as an alternating renewal

process

u := lim
T→∞

T0

T
=

E[L0]

E[L0] + E[L1]
, (2)

where L0, L1 are geometrically distributed random variables

denoting the number of successive slots with occupied and idle

state, where E[L0] =
1
α
,E[L1] =

1
β

and T = T0 + T1. With

the knowledge of transition probabilities (α, β), u is evaluated

as

u =
β

α+ β
. (3)

After obtaining u for N channels, i.e., u = [u1, u2, ..., uN ], SU

ranks the channels and optimizes its capacity. This knowledge

is not available at SU and is estimated through sensing.

III. ESTIMATION ALGORITHM

A. Maximum Likelihood Estimation for a complete dataset

The slot sequence of a single PU channel is represented as

a random vector X, where each slot Xt is a binary random
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Fig. 2. A state sequence X of a primary user channel following a Markov
process, observed by a secondary user denoted as Y.

variable. The estimation of the model parameters θ = (α, β)
from an observed data set x = [x1, x2, ..., xt, ..., xT ], where

T ∈ N is done using Maximum Likelihood Estimation [5].

Definition 1 in Appendix describes the nomenclature of the

exponential family. Following it, Definition 2 represents the

Markov process characterized by likelihood function p(x|θ) as

an exponential family. Consider (26) and (24) from Definition

2, the MLE of parameters describing the Markov process are

determined as
[
α̂ β̂

]
=
[
t01
T0

t10
T1

]
, (4)

where t01, t10, T0 and T1 are the sufficient statistics of a two

state Markov process. t01 and t10 are number of consecutive

slots with sample values (xt−1 = 0, xt = 1) and (xt−1 =
1, xt = 0) is defined as

t01 :=

T∑

t=2

✶{xt=1|xt−1=0}

t10 :=
T∑

t=2

✶{xt=0|xt−1=1}.

(5)

T0 and T1 already are defined in (1). The sufficient statistics

are evaluated after observing the sequence x.

B. Maximum Likelihood Estimation for an incomplete dataset

Until now, the parameters for each channel are estimated

assuming that all channels are sensed at each of the T slots.

But in a real scenario, N is large and the channels are

sparsely distributed in the spectrum. The sampling rate of

A/D converters and time slot duration bound the number of

channels that can be sensed in a given time slot by SU.

At the start, SU has no knowledge of the parameters, therefore

it randomly selects M(< N) channels for sensing in each slot.

Without loss of generality, this is equivalent to the case when

a single channel is sensed by the SU at K non-consecutive

slots. Now, the task of SU is to estimate the parameters for

the channel from K observed slots. Therefore, we consider

only a given PU channel that follows a slot sequence xT , and

yK are the slots observed by SU as described in Fig.2, where

K ≤ T , with equality when the SU observes all the slots.

The SU observing a single PU channel illustrated in Fig.2 is

represented as

Y = h(X), (6)

where h : X T → YK is many to one mapping. (·)(·) represents

the Cartesian product. X ∈ X T is a sequence of slots that



symbolizes the complete dataset and Y ∈ YK are the slots

that are observed by the SU represents the incomplete dataset

with probability measures p(x|θ) and p(y|θ). The slot indices

for the PU and SU are denoted by t and k, see Fig.2. The

information gained after observing y confines the sample space

X T to a sub-space X T (y) ⊂ X T , with probability measure

p(x|y, θ). The relationship between probability measure for the

incomplete and complete data is given by

p(y|θ) =
∑

XT (y)

p(x|θ). (7)

We consider T = LK+1, where L is the skipped slots length,

i.e., the SU observes a given PU channel after skipping L
slots. Now, L = constant depicts the periodic behavior for slot

observation, where as random value of L refers to a general

case.

Without loss of generality, we consider first the periodic

case where L is fixed and then generalize to the ran-

dom case. Fig.2 shows that, when (k)
th

= (t)
th

then

(k + 1)
th

= (t+ L+ 1)
th

. For the case where T =
5,K = 2, L = 3 and y1 = 0, y5 = 1, X T (y) =
[0, x2, x3, x4, 1] corresponds to 2L combinations of path se-

quences {[0, 0, 0, 0, 1], [0, 0, 0, 1, 1], ..., [0, 1, 1, 1, 1]}. Apply-

ing Markov property to define p(y|θ) in terms of conventional

parameters (α, β) over the sample space X T (y)

p(y|θ) =(1− α)3 · α+ (1− α)2 · α · (1− β)+

(1− α) · α2 · β + (1− α) · α · (1− β)2+

(1− α) · α2 · β + α2 · (1− β) · β+

α2 · (1− β) · β + α · (1− β)2.

(8)

Clearly, the expression p(y|θ) given in (8) forms a non-linear

expression in terms of (α, β), which cannot be represented as

an exponential family, as described in Definition 1. However,

under the Bayesian framework p(y|θ) can be represented as

p(y|θ) = p(x, y|θ)/p(x|y, θ),

inserting p(x, y|θ) = p(x|θ) and taking log delivers

log p(y|θ) = log p(x|θ)− log p(x|y, θ). (9)

Maximizing log p(y|θ) by taking the gradient of (9) ▽θ of

log(L(θ|y)) to find the critical points

▽θ logL(θ|y) = ▽θ log p(x|θ)−▽θ log p(x|y, θ). (10)

Using the expressions (19), (23), ▽θ log p(x|θ) and

▽θ log p(x|y, θ) can be substituted as

▽θ logL(θ|y) = E[S(X)|θ]− E[S(X)|y, θ].

E[S(X)] and E[S(X|y)] presented in (19), (23) involves the

natural parameters η, however, it can be reparameterized

to the conventional parameters θ, refer Definition 2 η1 =
log α

1−α
, η2 = log β

1−β
.

Evaluating ▽θ log(L(θ|y)) = 0 to find critical points

E[S(X)|θ] = E[S(X)|y, θ]. (11)

(11) gives a relation between the conditional and the uncondi-

tional expected value of the sufficient statistic. To solve (11)

for θ, the knowledge of p(x|θ) on the left hand side and

p(x|y, θ) on the right hand side is required for calculating the

E. This is not available, hence the expression in (11) doesn’t

lead to a solution. In order to find a solution, an iterative

approach is required.

C. Expectation and Maximization Algorithm

The Expectation and maximization algorithm (E-M algo-

rithm) is an iterative approach (p = 1, 2..., P ), first proposed

by Dempster et al. [8], that determines the MLE for the

incomplete dataset, where the analytic solution given by (11)

doesn’t exist. The iteration breaks (11) into the expectation

(E-step) and maximization (M-step) step. Here we apply the

E-M algorithm to the Markov process with incomplete dataset.

1) Expectation Step: The E-step computes the right hand

side of (11) by substituting the p(x|y, θ) with unknown θ for

p(x|y, θ(p)) with known θ(p)

[
t
(p)
01

T0
(p)

t
(p)
10

T1
(p) .
]
= E

[
S(X)|y, θ(p)

]
(12)

In the (p)th iteration, (12) evaluates the conditional

expectation E
[
S(X)|y, θ(p)

]
to obtain the statistics

t
(p)
01 , t

(p)
10 , T0

(p), T1
(p) with known θ(p) and given y, where θ(p)

is the value of the parameter determined from the (p− 1)
th

step. Following the mathematical intuition, E-step completes

the missing information to obtain t
(p)
01 , t

(p)
10 , T0

(p), T1
(p)

required for estimation.

2) Maximization Step: The M-step performs the maximiza-

tion by computing left hand side of (11)

E

[
S(X)|θ(p+1)

]
=
[

t
(p)
01

T0
(p)

t
(p)
10

T1
(p)

]
, (13)

i.e., the statistics t
(p)
01 , t

(p)
10 , T0

(p), T1
(p) evaluated in the E-step

are used to determine the estimates θ̂(p+1) for the (p+ 1)
th

E-step
[
α̂(p+1) β̂(p+1)

]
=
[

t
(p)
01

T0
(p)

t
(p)
10

T1
(p)

]
. (14)

The convergence is obtained at a critical point where

(α̂(p), β̂(p)) satisfies (11).

For p = 1, the E-M algorithm requires to initialize the

parameters to a starting value (α̂(0), β̂(0)). Following the

definition of the incomplete dataset from (6), the likelihood

function has multiple modes. Therefore, it is important to start

with different choices of starting values. Upon convergence

of estimates to their local maximum, estimate with the least

squared error is selected as the global maximum.

To find the global maximum, the squared error

SE = 10 · log
(
|p(y|(α̂(p), β̂(p)))− p(y|(α, β))|2

)
(15)

is computed at local maxima for each starting choice.

p(y|(α, β)) described in (8) is evaluated after observing y,

hence known at SU. p(y|(α̂(p), β̂(p))) is determined at local

maxima (α̂(p), β̂(p)).
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Fig. 3. The convergence of the estimates (α̂(p), β̂(p)) against the iterations following the E-M algorithm where different choices of starting values (α(0), β(0))
are considered.

IV. SIMULATION RESULTS

To check the validity of the E-M algorithm, Monte Carlo

simulations are performed. The slot sequence for a single

channel is generated using Markov process with known (α, β).
To realize incomplete dataset, unobserved slots according to

L are declared undefined.

The SU implements E-M algorithm over the observed slots

to determine the estimates (α̂, β̂). The iterations for the E-

M algorithm are carried out over the software. For analysis,

the intermediate values θ̂(p) for pth iteration are stored. To

obtain a considerable amount of estimation accuracy for the

parameters, the number of slots observed by SU is fixed to

K = 106.

Consider a single realization of a channel with L = 4, i.e., SU

observes every 5th slot of the channel. (α, β) = (0.8, 0.3) are

chosen to be the true value of the parameters. Fig.3 illustrates

the convergence of the estimates (α̂(p), β̂(p)) with the number

of iterations of the E-M algorithm. More than 80 % of the

starting values attain their local maximum within 50 iterations.

It is seen that starting value (α̂(0), β̂(0)) = (0.6, 0.5) converges

to its local maximum (0.791, 0.297) at p = 30, which is

closest to the true value (0.8, 0.3).

To determine the global maximum, SE for the convergence

points are computed. Table I provides the SE for the local

maxima at (α̂(100), β̂(100)) for the different starting choices.

To illustrate the correlation between SE and modes for the

function p(y|(α, β)), SE is computed for (α̂, β̂) ∈ [0, 1] at

steps of 0.02 and plotted as a color map in Fig.4. Please notice,

Fig.4 intends to demonstrate the convergence of the E-M

algorithm at local maxima. However limited by its resolution,

it doesn’t represent all the local maximum. To follow the

convergence path of the estimates obtained from E-M, the

starting choices (α̂(0), β̂(0)) and their values (α̂(100), β̂(100))
after 100th iteration are mapped into the color map.

TABLE I
CONVERGENCE AND SQUARED ERROR AT P = 100 FOR DIFFERENT

CHOICES OF STARTING VALUES

(α̂(0), β̂(0)) (α̂(100), β̂(100)) SE (dB)

(0.1,0.6) (0.581, 0.218) -66.6

(0.2,0.7) (0.726, 0.272) -96.9

(0.3,0.1) (0.411, 0.154) -45.9

(0.4,0.5) (0.690, 0.259) -96.7

(0.6,0.5) (0.791, 0.297) -103.7

(0.7,0.7) (0.913, 0.343) -56.7

(0.8,0.5) (0.890, 0.334) -62.1

(0.9,0.8) (0.964, 0.361) -46.8

Fig.4 shows that for all starting values (α̂(0), β̂(0)), the E-

M algorithm converges to the local maximum that also has

the lowest SE in the region. Table I and Fig.4 validate that

the value (α̂(0), β̂(0)) = (0.6, 0.5) attains its convergence

at (α̂(100), β̂(100)) = (0.791, 0.297), that has the least SE

among the starting choices, is the global maximum. Hence,

is the estimate of the parameters. The number of modes in

the likelihood function is proportional to L. Large L, i.e.,

L > 10 corresponds to a considerable increase in the number

of starting choices to determine the global maximum.

The convergence accuracy for the E-M algorithm is examined

using average relative error γ, defined as

γ =
1

2

(
|α− α̂(p)|

α
+

|β − β̂(p)|

β

)
· 100. (16)

Fig.5 considers the validation of E-M algorithm to a real

scenario, where SU observes N = 5 PU channels, each having

a different (α, β) and L ∈ {1, 2, 3, 4, 5, 6}, i.e., each channel

is observed by the SU after a skipping L slots, where L is

uniformly distributed over {1, 2, 3, 4, 5, 6}. For the starting

choice of (α̂(0), β̂(0)) for each channel, only the value with
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utilization probabilities u = [0.27, 0.81, 0.2, 0.41, 0.4] evaluated using (3).

least SE is examined.

For an appropriate of (α̂(0), β̂(0)), E-M algorithm estimates

the parameters with γ < 5%, for all the channels after p = 20
iterations and γ < 1% for 80%, of the channels after p = 1000.

(α, β) determine the 2-D slope of the likelihood function. For

its fixed value of (α, β), the rate of convergence depends on

L and the starting choice (α̂(0), β̂(0)).
Not considered in the paper, however several heuristic ap-

proaches can be applied for choosing (α̂(0), β̂(0)), for example,

T0 and T1 are evaluated from (1) after observing y, thereby u is

determined using 1−u
u

= T1

T0
from (2). Inserting the value u in

(3), the slope m = β
α
= 1−u

u
can be obtained. This states that

local maxima exist across the points (η,m·η) where η ∈ [0, 1],
see Fig.4 where m = 0.3

0.8 . Choosing a value close to (η,m ·η)
increases the convergence speed of the E-M algorithm.

The E-M algorithm is an iterative approach based on MLE,

that determines the critical points for the likelihood function.

The MLE properties, i.e., unbiased and minimum variance are

however retained.

V. CONCLUSION

The model parameters, i.e, state transition probabilities

enable the SU to implement reinforcement learning and utilize

spectrum holes efficiently. The model parameters are not

known at the SU and need to be estimated. However, sensing

all PU channels in every slot is not possible making the

estimation of the parameters difficult. In this paper, we derived

an analytical expression of the likelihood function for the

Markov process for the complete and incomplete dataset.

The paper also proposes the E-M algorithm to estimate the

parameters when the slots are sensed non-consecutively. The

simulations show the validity of the estimates obtained using

E-M algorithm. To find the global maximum, the least squared

error approach is applied. The paper considers perfect sensing,

the effect on estimation due to presence of noise and channel

will be considered in the future work.

APPENDIX

The E-M algorithm is a powerful tool to determine MLE

for an incomplete dataset. However, it is applicable only where

the underlying distribution belongs to a class of exponential

families. To confirm its application over the Markov process,

it is important to describe Markov process as an exponential

family.

Definition 1 (Exponential family). The probability mass func-

tion of a random vector X = [X1, X2, ..., Xt] with dimension

t belongs to an exponential family if it can be represented in

the form [10]

p(x|η) = h(x) · eη
′·S(x)−A(η), (17)

where θ) = [θ1, θ2, ...., θd] ∈ Θ ⊂ R
d are the convectional

parameters. x ∈ X t ⊂ R
t. η = [η1, η2, ..., ηm] are the natural

or the canonical parameters. S = [S1, S2, ..., Sm] are the

sufficient statistics. Each ηi corresponds to a mapping from

the conventional parameter space to the canonical parameter

space, i.e., ηi : Θ → N ⊂ R. The ith sufficient statistic

Si : X
t → R for i = 1, 2, ..m. h : X → R>0 is the support

function. A(η) : Nm → R>0 is the normalizing function or

the cumulant moment generating function for S(x). Finally,

m, t, d ∈ N. (·)′ represents the matrix transpose.

Reformulating (17) to represent A(η) in terms of S(x) and

h(x) and inserting t = T gives

A(η) = log

∫

x∈XT

h(x) · eη
′·S(x)dx. (18)



Clearly, A(η) in (18) represents the cumulant moment gener-

ating function for S(x), solving

▽ηA(η) = E[S(X)], (19)

determines the critical points of the maximum likelihood

estimates.

Assuming ergodicity, the E is replaced by sample sum
∑

, for

i.i.d. sequence x = [x1, x2, ...xT ], it follows that

▽η A(η̂) =
1

T

T∑

t

S(xt). (20)

Following (18), the conditional probability measure p(x|y,η)
and A(η|y) are determined as

p(x|y,η) = h(x) · eη
′·S(x)−A(η|y), (21)

A(η|y) = log

∫

x∈XT (y)

h(x) · eη
′·S(x)dx, gives (22)

▽ηA(η|y) = E[S(X)|y]. (23)

Definition 2 (Maximum likelihood estimation for the Markov

process). For a sequence, X = [X1, X2, ..., Xt, .., XT ] are

related through the Markov property. The pairs (Xt, Xt−1)
and (Xt+1, Xt) are conditionally independent, hence i.i.d.

Using this property, the Markov process can be represented

as mixture of two exponential families, where d = 1,m =
1, t = T .

p(x|θ) = p(x1|θ) ·
T∏

t=2

p(xt+1|xt, θ)

= (1− α)
∑T

t=2(1−✶{xt=1|xt−1=0}) · α
∑T

t=2 ✶{xt=1|xt−1=0} ·

β
∑T

t=2 ✶{xt=0|xt−1=1} · (1− β)
∑T

t=2(1−✶{xt=0|xt−1=1})

= h1(x) · e
∑T

t=2 ✶{xt=1|xt−1=0}·log ( α
1−α )+log(1−α)·

h2(x) · e
∑T

t=2 ✶{xt=0|xt−1=1}·log ( β

1−β )+log(1−β)
(24)

(α, β) ∈ [0, 1], (xt, xt−1) ∈ {0, 1}2, η1(α) = log
(

α
1−α

)
,

η2(β) = log
(

β
1−β

)
, S1(xt, xt−1) = ✶{xt=1|xt−1=0},

S2(xt, xt−1) = ✶{xt=0|xt−1=1}, A1 = log(1 + eη1),
A2 = log(1 + eη2),

h1(x) =
∏T

t=2 ✶{xt∈{0,1}∪xt−1=0}, h2(x) =∏T
t=2 ✶{xt∈{0,1}∪xt−1=1}.

Following the result in (19), the underlying Markov process

defined in (24) is represented as
[

d
dη1

A1(η1)
d

dη2
A2(η2)

]
=
[
E[S1(X)] E[S2(X)]

]
. (25)

Using the conditional independence between (Xt, Xt−1) and

(Xt+1, Xt), and applying ergodicity gives
[

d
dη1

A1(η̂1)
d

dη2
A2(η̂2)

]
=

[
1
T0

T∑
t=2

✶{xt=1|xt−1=0}
1
T1

T∑
t=2

✶{xt=0|xt−1=1}

]
,

(26)

where T0 :=
∑T

t ✶{xt|xt−1=0} and T1 :=
∑T

t ✶{xt|xt−1=1}.
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