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Abstract—Conventional peak detection algorithms are not
designed to include information on the expected peak shape.
Therefore, commonly used detectors discard this valuable infor-
mation and do not perform optimally in regard to the given
possibilities. Designed and evaluated is a detector based on
an artificial neural network, which is employed for pattern
recognition in order to exploit the peak shape information. The
detector outperforms the best detector using no peak shape
information with a detection rate increase of up to 10% at a
constant false alarm rate. The proposed detection method is
compared with a threshold detector and an ordered statistics
constant false alarm rate (OS-CFAR) detector commonly used in
radar. The introduced detector provides useful information on the
reliability of the peak detection. Furthermore, it is shown that the
neural network based detection mechanism is easily employable
on hardware because no knowledge about the signal-to-noise ratio
of the training data is needed.

Index Terms—Peak Shape, Detection, Neural Network, Radar,
DSP

I. INTRODUCTION

Peak detection is a fundamental part of radar signal pro-

cessing. It is implemented in every radar system to discrim-

inate targets against clutter and noise. The target detection

performance is expressed in terms of detection probability and

false alarm probability, which are the main figures of merit

of a radar. Thus, every improvement in this field should be

examined carefully.

In this paper, a peak detector based on a neural network

is designed and evaluated. The basic idea of the detector is

including conventionally unused information in order to differ

between signal and noise peaks in the frequency domain by

identifying known signal peak shapes.

II. SIGNAL AND NOISE MODEL

Various popular radar continuous wave techniques such as

mono-frequency CW, FSK or FMCW radar [1] require the

detection of single spectral lines in the frequency domain.

Hence, given the presence of I targets, the complex baseband

signal can be modelled as

s̃(n) =

I
∑

i=1

ai exp (j2πfiTsn) (1)

with amplitudes ai, frequencies fi and the sampling rate

fs =
1

Ts

. (2)

E.g., in a single target scenario with CW or FSK modulation

the baseband signal is described with I = 1 and f1 represents

the Doppler frequency of the target. Noise is added using

a complex additive white Gaussian noise (AWGN) model,

yielding

s(n) = s̃(n) + AWGN(n, µ, σ). (3)

We assume the noise to be zero-mean (µ = 0) with

a constant standard deviation σ. The signal-to-noise ratios

(SNRs) of each frequency fi in (1) is given by

SNRi =
a2i
σ2

. (4)

The respresentation of (3) in the frequency domain is gener-

ated using a normalized N -point Fast Fourier Transformation

(FFT)

S̃(k) =
1

N
FFTÑ {s(n)w(n)} (5)

with the window function w(n). Zero-padding allows in-

terpolating in the frequency domain in order to increase the

spectral resolution by attaching zeros to the original N signal

samples and calculate the transformation (5) over an enlarged

signal with Ñ samples. The zero-padding factor shall be

defined as

azp =
Ñ

N
. (6)

III. NON-COHERENT PEAK DETECTION

Two peak detection techniques are chosen to compare the

neural network based detector, which is proposed in section

IV, with existent detection algorithms. The threshold detector

[2] and OS-CFAR detector [3] are commonly used methods

for peak detection but do not exploit peak shape information.

Samples for peak detection are taken from the amplitude

spectrum

S(k) = abs(S̃(k)). (7)

The subset G(k) ⊂ S(k) with an odd width of M samples

is obtained by applying a sliding window to S(k). The indices

of G(k) range from −
(

M
2
− 1

)

to M
2
− 1 and G(0) is called

the cell-under-test (CUT). Fig. 1 gives an example spectrum.



Frequency

A
m
p
li
tu
d
e

CUT

M
G(k)

Fig. 1. Depicted is an example noisy amplitude spectrum with the sliding
window (blue, dashed) and the peak with the expected peak shape (red, dotted)
based on the window function used in the FFT. The detector gives a decision
for the CUT using only samples in the sliding window.

A. Threshold Detector

The detection rule of the threshold detector can be written

as

G(0)
H0

≶
H1

γT. (8)

H1 denotes the hypothesis that a peak is existent and H0 is

the Nullhypothesis, which declares that only noise is present

in the CUT.

The Neyman-Pearson lemma [2] declares that this detector

is the most powerful one using only information from the CUT

if a priori information of the noise power is given. Therefore

the threshold detector is used as the main reference detector.

Obviously for this detector the sliding window width MT =
1.

B. OS-CFAR Detector

The OS-CFAR detector takes MO samples from G(k) and

sorts them in ascending order:

GO(k̃) = sort {G(k)} with

k ∈ [−MO,1,−MO,2 − 1] ∧ [MO,2 + 1,MO,1]
(9)

Fig. 2 explains the sample selection from G(k) with MO,1

and MO,2 in detail. The detection rule is given by

G(0)

GO(Λ)

H0

≶
H1

γO. (10)

Λ = round {3MO/4} is a well suited choice for practical

applications and a typical value for MO is given with 24 . . . 32
or greater [3]. MO scales linearly with the used zero-padding

factor azp.

This detection algorithm is used widely in radar because the

noise power has not to be known, which is a great advantage

in practice. Furthermore, the algorithm is robust against time-

varying noise floors and clutter.
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Fig. 2. To select MO samples in GO(k), MO,1 = MO

2
+ MO,2 has to

hold. Samples within k ∈ [−MO,2,MO,2] are called protected samples,
which should exclude the peak shape around G(0).

IV. PEAK DETECTION WITH A NEURAL NETWORK

The used neural network implementation is called

NeuroBayes, which is developed by Blue Yonder [4] (formerly

phi-t). Originally this software was developed for analyses in

the field of high energy physics and is widely used at CERN

and other physics institutions. The following sections describe

the internal processing of the employed NeuroBayes configu-

ration as described in the documentation [5]. This software is

chosen because of the known algorithmic robustness and easy

usability, e.g., it is not possible to over-train the network.

A. Peak Detection

The peak detection with the neural network is done by

feeding MN samples from the sliding window G(k) to the

network. The selected samples from G(k) cover the entire

peak shape around the CUT. The peak shape is defined by the

used window function w(n) in Eq. (5). The network output

ON is given by a real scalar value in the range of [−1, 1]. The

result of the transformation

PH1
=

ON + 1

2
(11)

represents the probability that a peak is shown to the

network and therefore directly provides useful information,

which can be used as a figure for the reliability of the

detection. The detection rule is a threshold decision and can

be written as

ON

H0

≶
H1

γN. (12)

B. Neural Network

The used neural network provided by NeuroBayes is a

three layer feed-forward network. Fig. 3 depicts the structure

of the network. The number of input nodes is set to the

sliding window size MN but can be reduced if the training

shows no significance for specific input bins. The output layer

consists only of a single node because we want to perform

a binary classification. The number of hidden nodes is set to

MN+1. Although the number of hidden nodes is optimizable,

the actual number is not very performance-critical because
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Fig. 3. The first layer of input nodes (circles) is fed with the preprocessed
input data. These are followed by the so-called hidden layer. The network
output is taken from the output layer, which is connected to the hidden layer.

the training algorithm is capable of pruning. This means that

unused connections between the nodes are removed if they are

not significant during the training. Nevertheless, a too small

number makes pruning impossible whereas a too large number

slows down the training.

C. Preprocessing

The employed default NeuroBayes preprocessing for binary

classification implies that all input variables are normalised,

decorrelated and then transformed to a Gaussian distribution

before they are given to the neural network.

The decorrelation of the input variables performs a transfor-

mation similar to creating an orthogonal basis from arbitrary

chosen vectors. This yields a transformation rule for the input

to a variable space in which no linear dependencies are

existent.

Hence, the preprocessing transforms the given input to

input variables which are more suitable for training due to

an equalized value range and distribution and the elimination

of linear dependencies.

D. Training

The used training procedure is a so-called supervised train-

ing and is based on a Broyden-Fletcher-Goldfarb-Shanno [6]

back-propagation algorithm. A weight is assigned to each

connection between nodes in Fig. 3, which makes them more

or less important to the network output. Given an input of

a known type, the back-propagation algorithm compares the

output of the network with the desired output and adjusts the

weights of the connections iteratively.

Although the training has to be done on samples with the

later expected noise power, it is a great advantage in practice

that the noise power of the shown samples has not to be

known because the training is doing implicitly a noise power

estimation by adjusting the network on the shown value range.

V. SIMULATION ANALYSIS

A. Analysis Procedure

The different detectors are evaluated by running the al-

gorithms N times on a noisy spectrum with a single target

peak in the middle. Fig. 4 shows an example for the count

of positive detections over the amplitude spectrum bins and
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Fig. 4. The evaluation of N spectra with the red dotted target peak in the
middle provides a count of positive detections (solid black line) by a specific
detector for each bin. The detection rate is given by the maximum count in
the green dashed box normalized to N . This is indicated by the upper blue
dashed line. The false alarm rate is calculated using the mean of all detections
outside this box normalized to N as shown by the lower blue dashed line. The
size of the green dashed box is chosen in regard to the width of the specific
peak shape and the sliding window so that no information of the target peak
is included in the false alarm rate calculation.

explains the calculation of the detection rate and the false

alarm rate.

To model the leakage of the signal energy across adja-

cent frequency bins, a jitter is applied to the frequencies

fi in Eq. (1). This means that whenever a signal is gen-

erated the frequency is randomly chosen within the range
[

fi −
fS

2Ñ
, fi +

fS

2Ñ

]

, which covers all positions between the

bins.

The analysis refers to the receiver operating characteristics

(ROC) as the plot of the detection rate over the false alarm

rate at a given SNR. A ROC diagram is created by evaluating

N spectra for various thresholds γ.

B. Signal and Detector Parameters

The threshold detector is set up as described in section III

because no free parameters are to be determined. The noise

power is supposed to be known. The OS-CFAR algorithm is

implemented with 20 protected samples and 129 reference

samples. The relative threshold is set to G(Λ) with Λ =
round {3MO/4} = 97. For the neural network based detector,

a sliding window width of MO = 21 is used. Fig. 5 shows the

averaged spectrum following Eq. (5) with a Hamming window

[7], fs = 1024, N = 1024, and azp = 4. It illustrates the

suitability of the parameter choices for signal and detectors.

These parameters apply to all presented simulations if not

stated otherwise.

C. Training Analysis

NeuroBayes provides a training analysis toolchain using

ROOT [8]. The separation of signal and background (noise

only) events by the neural network can be evaluated and is

shown in Fig. 6. It provides all information about detection

rate and false alarm rate at a given neural network output

threshold γN and can be transformed into a ROC plot.

The detection rate and false alarm rate estimations gathered

from the neural network training analysis in Fig. 6 match

well with the simulations based on the trained network, which

are depicted in Fig. 7. Hence, any false alarm rate and
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Fig. 5. This spectrum is averaged over 103 realizations. The length of the
window in-between the vertical red lines is 21 samples and equals the neural
network sliding window width MN and the number of protected samples of
the OS-CFAR detector. The black dotted vertical lines indicates the OS-CFAR
sliding window size with 149 samples.

Fig. 6. Shown is the histogram of the signal (red) and background (black)
events used in the training over the neural network output. This data equals
a receiver operating characteristic if an arbitrary number of thresholds
γN ∈ [−1, 1] is evaluated.

the associated threshold γN are given directly by the neural

network training analysis.

The NeuroBayes training analysis provides also the evalua-

tion of the significance of the input bins. Fig. 8 shows exactly

which bins are significant due the correlation to the output and

that the sliding window width MN = 21 can be optimized to

M̃N = 13 without a performance loss.

Fig. 9 evaluates the influence of the SNR of the training

data on the performance on data with a constant SNR. It

shows that no knowledge of the training data SNR is needed,

which simplifies training on data from hardware significantly.

Because of this, the SNR of the training data is not specified

in following evaluations.

D. Detection Performance

Fig. 10 compares the discussed detectors in a ROC diagram.

It can be seen that the neural network based detector outper-

forms the reference detectors and reveals a highly improved

detection rate especially at low false alarm rates. The detection

rate in regard to a variable SNR and a constant false alarm rate

as depicted in Fig. 11 shows an improved performance at all

SNRs for the neural network based detector. Furthermore, this

detector performs superiorly due to a better peak localisation

because of the slimmer detection probability function shown in

Fig. 12. Fig. 10 to Fig. 12 show the expected performance loss

of the OS-CFAR detector in regard to the threshold detector

[3].
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Fig. 7. Plotted are detection rates and false alarm rates estimated by the
NeuroBayes training analysis (blue line without errorbars), the test of these
values (continuous red line with errorbars) and the reference threshold detector
performance (dashed black line with errorbars) at a constant false alarm rate
of 10−2 and 8 dB SNR. The test data is evaluated with MN = 21 and 102

iterations per value. Plotted are the mean and standard deviation of 100 tests.

VI. CONCLUSION

The proposed neural network based peak detector exploits

peak shape information successfully with a superior perfor-

mance in all evaluated SNR scenarios. Furthermore, it is

shown that the detector has an improved peak localization

due to a slim detection probability distribution around the

target peak and using a minimal number of samples from

the amplitude spectrum including only the width of the peak

shape. The training of the used neural network provided by

NeuroBayes is simple because it is shown that no knowledge

about the SNR and the constant noise power of the training

data is needed. At a false alarm rate of 10−2 the neural network

based detector provides a performance increase of up to 10%
in regard to the threshold detector and up to 16% compared

with the OS-CFAR detector. An additional benefit of the neural

network based detector is that we directly obtain information

on the reliability of the detection.

Moreover, the detection method using neural networks is

easily extendible by giving additional input parameters to the

network, e.g., abstract properties such as mean or variance

of a subset of samples. Whether including such information

improves the performance has to be shown by further studies.
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Fig. 8. The matrix shows the correlation of the output of the neural network
(bin 1) and the neural network input (bins 2 . . . 22). Evaluated is a training
with 104 training samples on data with 8 dB SNR and a Hamming window.
The plot shows that only input variables 6 to 18 are significant and the sliding
window width MN = 21 can be reduced.
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Fig. 9. The detection rates are evaluated at 8 dB SNR and a false alarm rate
of 10−2 with a training at different SNRs. A single detection rate or false
alarm rate is measured over 103 iterations. Shown are the mean and standard
deviation of 100 values. The continuous red line represents the neural network
based detector and the dashed black line is the reference threshold detector.
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Fig. 10. The ROC diagram is generated at 8 dB SNR, 103 iterations per
point and a neural network training on 104 samples.
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Fig. 11. The detection rates are evaluated with 103 iterations per point and
the detector thresholds for a false alarm rate of (0.98± 0.09) · 10−2 for the
threshold detector, (1.04±0.06) ·10−2 for the neural network based detector
and (1.29± 0.09) · 10−2 for the OS-CFAR detector. The neural network is
trained on 104 samples.
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Fig. 12. Shown is the detection count normalized to N = 103 iterations with
a false alarm rate of 10−2 at 8 dB SNR and a neural network trained on 104

samples.


