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Abstract—This work analyzes the gains of cooperative relaying
in interference-limited networks, in which outages can be due
to interference and fading. A stochastic model based on point
process theory is used to capture the spatial randomness present
in contemporary wireless networks. Using a modification of the
diversity order metric, the reliability gain of selection decode-
and-forward is studied for several cases. The main results are
as follows: the achievable spatial-contention diversity order (SC-
DO) is equal to one irrespective of the type of channel which
is due to the ineffectiveness of the relay in the MAC-phase
(transmit diversity). In the BC-phase (receive diversity), the SC-
DO depends on the amount of fading and spatial interference
correlation. In the absence of fading, there is a hard transition
between SC-DO of either one or two, depending on the system
parameters.

Index Terms—Cooperative relaying, interference, point process
theory, selection decode-and-forward

I. INTRODUCTION

In spite of steadily increasing data rate demands, coopera-

tive diversity—and most saliently, cooperative relaying—has

emerged to a widely-recognized concept to increase reliability

and/or throughput through exploration of spatial diversity.

Cooperative relaying has gained practical relevance at least

since its adoption in the 3GPP Rel-10 for 4G networks [1].

Taking 4G as an example, the trend for networks goes toward

interference-limitedness as they must cope with heterogene-

ity/coexistence, densification of devices and sometimes unpre-

dictable deployments [2]. A better understanding of coopera-

tive relaying in the presence of random interference is hence

mandatory. Among the vast body of literature concerning

relaying, most prominently [3], [4], there exist only a limited

number of works that take into account the effect of random

interference, see e.g., [5], [6].

In the high reliability regime, the diversity order [4] metric

can be used to measure the increase in robustness against

random fluctuations in the channel. In the interference-free

scenario, this regime is obtained by letting SNR → ∞.

Practically, this involves scaling the transmit power since

the receiver noise cannot be lowered to an arbitrary extent.

This observation, however, does not apply to interference-

limited multi-user networks since jointly increasing transmit

power does not increase the individual SIRs. This gives rise

to the question of how to measure the diversity order of

cooperative relaying in interference-limited networks appro-

priately. We propose a modified diversity order metric, namely

spatial-contention diversity order, which is based on scaling

the density of active nodes in the network. We argue that

this modified metric is more suitable for interference-limited

networks since the spatial resource—which is considered the

critical resource—is taken into account. Also, controlling the

density of active transmissions has been understood as an

important and effective means to increase network capacity,

and is therefore the underlying mechanism of practical MAC

protocols such as Aloha (spatial reuse with medium access

probability) and CSMA (spatial inhibition of active nodes). It

is hence worth studying the diversity behavior of cooperative

relaying as a function of the density of active nodes.

Using point process theory, we derive a stochastic model to

study the diversity of cooperative relaying in the presence of

random interference. We aim at answering the following ques-

tions: How much diversity can we expect in the interference-

limited case? How does spatial interference correlation and

fading affect the achievable diversity gains?

II. SYSTEM MODEL AND ASSUMPTIONS

To address the key questions of this work, we break the

analysis down into a single snapshot of the network, in which

a given transmission is interfered by randomly located nodes

transmitting in the same time-frequency resource.

A. Channel model

The power path loss between two locations x, y ∈ R
2 is

given by the non-singular path loss function ℓ(|x − y|) :=
(1+ |x−y|α)−1, where α > 2 denotes the path loss exponent.

Both the correlation and the statistics of the SIR strongly

depend on the type of channel fading, and particularly on its

distribution. Since the family of practical fading distributions

is large, we focus on two extreme cases: frequency-flat block

Rayleigh fading and path loss only, the former being usually

considered as severe fading while the latter can be seen as the

limiting case of weak scatterings.

B. Relay protocol

We consider a three-node configuration which consists of a

source located at xs, a destination located at xd and a half-

duplex relay located at xr. The locations xs, xd and xr are

arbitrary but fixed. Hence, we place the destination into the

origin (xd = o). The block is divided into two consecutive

time slots over which the transmission takes place.

Selection decode-and-forward (SDF) [4] is used as the relay

protocol. In SDF, the source broadcasts a packet in the first

time slot, while the destination buffers what it receives and



the relay tries to decode the packet. Depending on whether the

relay was able to correctly decode the packet, either the relay

or the source then re-transmits the packet to the destination

in the second time slot. Finally, the destination appropriately

combines the two copies prior to decoding the packet.

C. Interference model

As the three-node configuration is part of a multi-user

environment, it will suffer from interference from other trans-

mitters (interferers). We assume that these interferers are

distributed according to a stationary Poisson point process

(PPP) with density λ.1 The PPP assumption is well-accepted

for capturing the spatial randomness in contemporary wireless

networks of several types [2], [7]. Formally, we define

Φ :=
{
(xi, gi, hi) : xi ∈ R

2, gi ∈ R+, hi ∈ R+

}
, (1)

where xi denotes the random location of the i-th interferer,

while the marks gi and hi define the channel fading gain from

the i-th interferer to the relay and the destination, respectively.

All marks are mutually i.i.d. and do not depend on the

interferer locations. The intensity measure of Φ is given by

Λ(A× Γ×Υ) := λ

∫

A

∫

Γ

dP (g ≤ g)

∫

Υ

dP (h ≤ h) dx

= λ|A|P(g ∈ Γ)P(h ∈ Υ), A ⊆ R
2,Γ ⊆ R+,Υ ⊆ R+. (2)

Remark 1. For the path loss only model (gi ≡ hi ≡ 1 ∀i), the

intensity measure reduces to λ|A|.

Thus, the interference at the relay and at the destination is2

Ir :=
∑

i∈Φ

giℓ(|xi − xr|) and Id :=
∑

i∈Φ

hiℓ(|xi|). (3)

Note that Ir and Id are correlated because of the common

source of randomness given by the interferer locations {xi}∞i=0.

D. Performance metrics

With the above setting, the SIR at the relay is given by

SIRsr=
usrℓ(|xs − xr|)

Ir
, (4)

where usr denotes the channel fading gain on the source-relay

link. Given that the relay was able to decode successfully, the

SIR at the destination after optimum combining is

SIRsrd=
usdℓ(|xs|) + urdℓ(|xr|)

Id
, (5)

where usd and urd are the channel fading gains on the source-

destination and relay-destination links, respectively. When the

relay fails to decode correctly, the transmitter re-transmits the

packet and the SIR at the destination becomes

SIRsd=
2usdℓ(|xs|)

Id
. (6)

1Since the PPP assumption excludes any form of correlation in the nodes’
locations, the considered source-relay-destination link is not typical.

2We use the short-hand notation i ∈ Φ instead of (xi, gi, hi) ∈ Φ.
Interference is treated as white noise. Without loss of generality, we set
transmit power to one. We assume the interference power realizations to
remain constant over the two considered time slots.

Remark 2. When referring to the entire group of fading

variables, i.e., {usr, usd, urd}, {gi}∞i=0 and {hi}∞i=0, we will use

the short-hand notation u, g and h, respectively.

In many cases the random fluctuations of the SIR cannot

be tracked by the transmitter due to practical constraints, and

particularly because the interference from many nodes cannot

be known a priori. This may lead to an outage, for which the

probability of occurrence is a useful performance metric.

Definition 1. The outage probability (OP) is defined as

q := P(SIR < β) (7)

for a pre-defined coding/modulation-specific threshold β.

We propose an alternative formulation of the diversity order

metric that applies to a multi-user environment and which is

based on controlling the density of simultaneous transmissions.

Definition 2. The spatial-contention diversity order (SC-DO)

is defined as

∆ := lim
λ→0

log q

logλ
. (8)

Example 1. In the absence of the relay, the OP for Rayleigh

fading is known to be [8]

1− exp
{
− λπ2 2

α |xs|
2β

2
α csc( 2

απ)
}
. (9)

The SC-DO in this case is given by ∆ = 1 as expected.

III. OUTAGE ANALYSIS — RAYLEIGH FADING

In most works, cooperative relaying is examined for the case

of exponentially distributed fading gains with channel state

information (CSI) available only at the receivers. We start our

analysis by considering this scenario.

From [4], the OP for SDF can be expressed as

q = P(SIRsd <β, SIRsr <β)
︸ ︷︷ ︸

:=qBC

+P(SIRsrd <β, SIRsr ≥ β)
︸ ︷︷ ︸

:=qMAC

, (10)

where qBC and qMAC denote the OP in the Broadcast phase

(BC-phase) and the MAC phase (MAC-phase), respectively.

Treating these two expressions separately will be advantageous

in the subsequent analysis. Applying stochastic geometry

tools, (10) can be calculated in semi-closed form.

Proposition 1. Define

ℓ∗sd(r) :=
1 + |xs|α

1 + rα
, ℓ∗rd(r) :=

1 + |xr|α

1 + rα
,

ℓ∗sr(r, φ) :=
1 + |xs − xr|α

1 + (r2 + x2r − 2rxr cosφ)
α

2

and assume |xs| 6= |xr|. For exponentially distributed u, g and

h, the OPs qBC and qMAC are given by

qBC = 1− exp
{
−λΨ

(
0, β2 ℓ

∗
sd(r)

)}
− exp

{
−λΨ

(
βℓ∗sr(r, φ), 0

)}

+exp
{
− λΨ

(
βℓ∗sr(r, φ),

β
2 ℓ

∗
sd(r)

)}
, (11)

and

qMAC = exp
{
− λΨ

(
βℓ∗sr(r, φ), 0

)}

−µ1 exp
{
− λΨ

(
βℓ∗sr(r, φ), βℓ

∗
sd(r)

)}

+µ2 exp
{
− λΨ

(
βℓ∗sr(r, φ), βℓ

∗
rd(r)

)}
, (12)



where µ1 = ℓ(|xs|)
ℓ(|xs|)−ℓ(|xr|)

, µ2 = ℓ(|xr|)
ℓ(|xs|)−ℓ(|xr|)

, and Ψ(f, g) =
∫∞

0

∫ π

0
2r
(
1− 1

(1+f(r,φ))(1+g(r))

)
dφdr.

Proof: We follow the approach used in [8]: we first

condition (10) on Φ and evaluate the probabilities w.r.t. u. Note

that for ℓ(|xs|) 6= ℓ(|xr|), the sum z = usdℓ(|xs|) + urdℓ(|xr|)
has distribution

P (z > z) =
ℓ(|xr|)e−zℓ(|xr|)

ℓ(|xs|)− ℓ(|xr|)
−
ℓ(|xs|)e−zℓ(|xs|)

ℓ(|xs|)− ℓ(|xr|)
. (13)

We then de-condition on Φ and exploit the linearity property

of the expectation. We apply the definition of the Laplace

transform for Poisson shot-noise processes with independent

marks [9] and insert the intensity measure from (2). Using the

fact that g and h are exponentially distributed, and switching

to polar coordinates yields the result.

Remark 3. The OP q for the case |xs| = |xr| can be computed

straightforward using a similar approach, see e.g., [6]. Due to

space limitations we do not present this result here.

1) Diversity order analysis: We begin our analysis by

noting the following Lemma.3

Lemma 1. Let w(t) =
∑

k ak (1− e−tzk), where t ≥ 0 and

ak, zk ∈ R. Then, w(t) t→0
∼ t if and only if

∑

k akzk 6= 0.

Proof: By the power series e−tz =
∑∞

k=0
(−tz)k

k! , we can

rewrite w(t) as

w(t) = t
∑

k

akzk −
t2

2

∑

k

akz
2
k + . . . (14)

showing that the first order coefficient in (14) must be non-

zero to obtain the desired scaling.

We are now in the position to derive the first results.

Theorem 1. The achievable SC-DO of SDF for exponentially

distributed u, g and h is ∆ = 1.

A proof is given in Appendix A. Theorem 1 states that there

is no SC-DO gain by relaying the source’s packet—which is

a negative result since it is known that SDF achieves diversity

order of two in the interference-free case [4]. This pitfall

results from the fact that by simply forwarding the source’s

packet, the relay cannot change the interference level at the

destination in the second time slot (qMAC
λ→0
∼ λ).

On the other hand, spatial correlation of the interference,

compounded with channel fading, renders the BC phase not as

effective as in the interference-free case (qBC
λ→0
∼ λ). Increas-

ing the relay-destination separation can lower this undesirable

effect and provide a stronger scaling of qBC at intermediate λ,

but it cannot steepen the asymptotic slope of qBC.

For these reasons, there is no reliability gain w.r.t. the

interference. Yet the relay can provide a power gain compared

to direct transmission.

2) Optimal relay position: Theorem 1 and the ensuing

discussion give rise to the question about the optimal relay

position. Using Proposition 1, we are able to numerically

minimize q over xr given xs.

3Some notation:f(z)z→0
∼ g(z) means limz→0 f(z)/g(z) = c, 0<c<∞.

We use b(x, r) to denote a two-dimensional ball of radius r centered at x.
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Fig. 1. Optimal relay position relative to source-destination distance as a
function of the path loss exponent. Line configuration assumed.

Glancing at Fig. 1, we make a surprising observation: it

is better to put the relay closer to the destination (receive

diversity) rather than to the source (transmit diversity), thereby

showing an adverse behavior compared to the interference-free

case. The intuition behind this observation is that the ability

to boost the received power through the relay-destination

link outweighs the reliability loss of the source-relay link.

Motivated by this result, we next focus on the achievable SC-

DO in the BC-phase only.

IV. DIVERSITY ANALYSIS IN BC-PHASE

In Section III it was concluded that the SC-DO is negatively

affected mainly due to the invariability of the interference at

the destination in the MAC-phase—the relay cannot provide

diversity w.r.t. the interference. This invariability moreover

does not change when a different fading distribution is as-

sumed. In contrast, the SC-DO of only the BC-phase can

theoretically be higher because the interference de-correlates

over space. In the proof of Theorem 1, however, it was shown

that for Rayleigh fading qBC
λ→0
∼ λ unless |xd − xr| → ∞.

Since this result relies on the interplay between the spatial

interference correlation and exponentially distributed fading

gains, we next study the achievable SC-DO in the BC-phase

for different assumptions about the fading.

A. Non-fading links + fading interference

In many scenarios CSI is available at the transmitter, typi-

cally indicating the instantaneous channel gains of the desired

links (u) to which β can then be adapted. The instantaneous

channel gains of the interfering links (g, h) however usually

remain unknown to the transmitter due to practical constraints.

In what follows, we modify our model by conditioning (10)

on u, thereby noting that outages are now due to interference

only. The dominant interferer phenomenon (cf. [7]) will play

an important role for the derivation of the subsequent results.

Definition 3. An interferer is called dominant if its individual

interference contribution is already sufficiently high to create

outage. The set of dominant interferers at the relay (destina-

tion) is defined as Φ̃r ⊆ Φ (Φ̃d ⊆ Φ).



Proposition 2. The OP qBC for SDF in the case of non-fading

links (u ≡ 1) and fading interference is lower bounded by

qBC ≥ 1− exp
{

− 2λ

∫

R+

r P
(
h > ℓ∗sd(r)

−1 2
β

)

×

∫ π

0

P
(
g > ℓ∗sr(r, φ)

−1 1
β

)
dφdr

}

. (15)

A proof is given in Appendix B. We are now able to analyze

the achievable SC-DO for this case.

Theorem 2. The achievable SC-DO of SDF in the BC-phase

for the case of non-fading links and fading interference is

∆ = 1.

Proof: Note that the expressions under the integral signs

in (15) are always positive. By Lemma 1 and since (15) is a

lower bound, we thus have qBC
λ→0
∼ λ.

B. Path loss only model

In case of weak scatterings between all nodes, the channel

can be characterized by the path loss only model, for which

an asymptotically tight lower bound on the interference tail

probability exists for the path loss law r−α. The next Lemma

extends this statement to the non-singular path loss law.4

Lemma 2. The interference tail probability lower bound based

on the dominant interferer phenomenon is tight as λ→ 0 also

for the non-singular path loss law defined in Section II.

Proof: We first note that the interference tail probability

lower bound based on the maximum interferer principle for the

path loss law r−α is tight [7]. This is due to the singularity

at r = 0 which renders the interference sub-exponential—

by allowing the maximum of the individual interference con-

tributions to dominate the sum interference. In contrast, the

interference in our case is not sub-exponential because of the

boundedness of our path loss function. However, it is intuitive

that the interference is nevertheless able to “make a single

relatively big jump” whenever the close neighborhood of the

receiver carries no (statistical) weight; which is the case at

small λ. Indeed, denoting by rn the n-th nearest interferer,

P
(
r−α
n (1 + rαn) > 1 + ǫ

)
= 1−

Γ(n, λπǫ−
2
α )

Γ(n)

λ→0
−→ 0, (16)

where Γ(a, z) =
∫∞

z ta−1e−t dt is the upper incomplete

Gamma function. Thus, (16) states that the individual con-

tributions of the n-nearest interferers become equal for the

two path loss laws as λ→ 0. From this equivalence it follows

that, in the small density regime, the dominance of the nearest

interferer is preserved with our path loss law. This, in turn,

renders the dominant-interferer based lower bound tight: when

the nearest interferer is not a member of the dominant set

(Φ̃ = ∅) it is likely that no outage occurs since adding the sum

interference from the remaining interferers to the maximum

interference will most likely not deteriorate the SIR much.

Using the fact that the dominant-interferer bound is asymp-

totically tight, we are now able to study the SC-DO.

4To the best of the authors’ knowledge, the statement in Lemma 2 was not
found explicitly in the literature.
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Theorem 3. Define Ar := b(xr, r1), Ad := b(xd, r2) and

Ar,d := Ar ∩ Ad, where r1 = (βℓ(|xs − xr|)−1 − 1)1/α and

(12βℓ(|xs|)−1−1)1/α. Then, qBC for SDF in the path loss only

case (u ≡ g ≡ h ≡ 1) is given by

qBC
λ→0
∼

{
λ|Ar,d|, Ar,d 6= ∅ (17)

λ2|Ar| |Ad|, Ar,d = ∅, (18)

and the achievable SC-DO in the BC-phase is

∆ =

{
1, |xr − xd| ≤ r1 + r2 (19)

2, otherwise. (20)

Proof: The proof is similar to the one of Proposition 2:

we first re-define the dominant interferer sets for our purposes,

leading to the regions Ar, Ar and their intersection Ar,d. By

Lemma 2, we then have

qBC
λ→0
∼ P

(
Φ(Ar,d) 6= ∅

)

+P
(
Φ(Ar \ Ad) 6= ∅

)
P
(
Φ(Ad \ Ar) 6= ∅

)
, (21)

where we make use of the independence property of the PPP.

Using the fact 1− exp(−λz) λ→0
∼ λz yields the result.

The regions Ar and Ar as well as their intersection play a

crucial role for the resulting diversity behavior: whenever there

is no overlapping of the individual dominant-interferer regions,

the interference at the relay and at the destination can be

assumed independent as λ→ 0, yielding ∆ = 2. The fact that

the transition from ∆ = 1 to ∆ = 2 is not continuous might

seem counter-intuitive first; as long as there is a non-zero

probability for the occurrence of a jointly-dominant interferer

(Ar,d 6= ∅), the linear term will be dominant as λ → 0.

Simulations confirm this result as can be seen in Fig. 2.

Remark 4. Theorem 1 and Theorem 2 also hold for the

case where the interferers perform SDF as well. Assuming

synchronous transmissions, this can be checked by regarding

the interference power of the interfering relays as being created

by the corresponding interfering source nodes and undergoing

a modified fading distribution.



V. CONCLUSION

Using point process theory and a modification of the diver-

sity order metric suitable for interference-limited networks, our

analysis reveals that the achievable spatial-contention diversity

order (SC-DO) of selection decode-and-forward is equal to

one. This is because conventional decode-and-forward relay-

ing, in general, cannot reduce the interference at the destina-

tion. As a consequence, the relay should be placed closer to the

destination (receive diversity) to provide considerable power

boosts. The analysis shows that such a receive-diversity con-

figuration is better in terms of achievable SC-DO: depending

on the interference correlation between relay and destination,

an SC-DO of two is achievable when fading is negligible

and the relay-destination link is reliable. The insights obtained

may be of interest for designing cooperative receive-diversity

techniques for contemporary wireless networks. A possible

extension could be to further study the achievable diversity

order for the case of non-Poisson interference, e.g., when the

interferers perform cooperative relaying as well.
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APPENDIX A

PROOF OF THEOREM 1

Taking the limit λ→ 0 in (11) and (12), we obtain

q λ→0
∼ λ

[

−Ψ
(
βℓ∗sr(r, φ),

β
2 ℓ

∗
sd(r)

)

+Ψ
(
0, β2 ℓ

∗
sd(r)

)
+Ψ

(
βℓ∗sr(r, φ), 0

)]

+λ
[

−Ψ
(
βℓ∗sr(r, φ), 0

)
+ µ1Ψ

(
βℓ∗sr(r, φ), βℓ

∗
sd(r)

)

−µ2Ψ
(
βℓ∗sr(r, φ), βℓ

∗
rd(r)

)]

+R(λ), (22)

where R(λ) contains all non-linear terms. By Lemma 1, the

linear term of q must be non-vanishing for the Theorem to

hold. Thus, we only need to prove that the linear term is non-

zero, for which strictly positiveness of the expressions inside

the two brackets is a sufficient condition. In what follows, we

will prove that the strictly-positiveness condition is fulfilled

for each of them. For each of the two expressions, we insert

Ψ(·, ·) and rewrite the sum of integrals by a single one, thereby

exploiting the linearity property of integrals. A sufficient

condition for strictly-positiveness of the two integrals is when

their integrands are strictly positive almost everywhere. After

some algebraic manipulations, we therefore have to check if

1 +
1

(1 + β
2 ℓ

∗
sd(r))(1 + βℓ∗sr(r, φ))

−
1

1 + β
2 ℓ

∗
sd(r)

−
1

1 + βℓ∗sr(r, φ)
> 0 (23)

for the qBC-part and

µ2(1 + βℓ∗sd(r)) − µ1(1 + βℓ∗rd(r))

+(1 + βℓ∗rd(r))(1 + βℓ∗sd(r)) > 0 (24)

for the qMAC-part. Both (23) and (24) are readily shown to be

strictly positive, implying that the linear term of q is strictly

positive as well. This proves the result.

APPENDIX B

PROOF OF PROPOSITION 2

We start by formalizing the definition of dominant sets:

Φ̃r :=

{

xi ∈ Φ :
giℓ(|xi − xr|)

ℓ(|xs − xr|)
>

1

β

}

(25)

Φ̃d :=

{

xi ∈ Φ :
hiℓ(|xi|)

ℓ(|xs|)
>

2

β

}

(26)

and

Φ̃r,d :=

{

xi ∈ Φ :
giℓ(|xi − xr|)

ℓ(|xs − xr|)
>

1

β
∧

hiℓ(|xi|)

ℓ(|xs|)
>

2

β

}

. (27)

Note that since Φ̃r,d = Φ̃r ∩ Φ̃d, the occurrence of the event

{Φ̃r,d 6= ∅} is a sufficient condition for {Φ̃r 6= ∅ ∧ Φ̃d 6= ∅}.

Therefore, we have P(Φ̃r,d 6= ∅) ≤ P(Φ̃r 6= ∅ ∧ Φ̃d 6= ∅). Thus,

qBC = P

(
∑

i∈Φ

giℓ(|xi − xr|)

ℓ(|xs − xr|)
>

1

β
,
∑

i∈Φ

hiℓ(|xi|)

ℓ(|xs|)
>

2

β

)

≥ P




∑

i∈Φ̃r

giℓ(|xi − xr|)

ℓ(|xs − xr|)
>

1

β
,
∑

i∈Φ̃d

hiℓ(|xi|)

ℓ(|xs|)
>

2

β





= P

(

Φ̃r 6= ∅, Φ̃d 6= ∅
)

≥ P

(

Φ̃r,d 6= ∅
)

= 1− exp (−ψ) , (28)

where the last equality follows from the number of elements

in Φ̃r,d being Poisson distributed with mean ψ, which can be

computed straightforward using (2) as

ψ = λ

∫

R2

P

(

g >
ℓ(|xs − xr|)

βℓ(|x− xr|)

)

P

(

h >
2ℓ(|xs|)

βℓ(|x|)

)

dx. (29)

This concludes the proof.
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