
High-Speed Turbo Equalization for GPP-based

Software Defined Radios

Michael Schwall and Friedrich K. Jondral

Karlsruhe Institute of Technology, Germany

Email: {michael.schwall, friedrich.jondral}@kit.edu

Abstract—High data rate waveforms for software defined
radios (SDR) have to cope with frequency selective fading due
to the mobile use in different harsh transmission environments.
The received signal needs to be equalized in order to restore the
transmitted information. Turbo equalization is a promising ap-
proach to deal with the inter-symbol interference occurring at the
receiver. The iterative exchange of soft information between the
equalizer and the decoder improves the decision reliability and
hence reduces the bit error probability compared to conventional
receivers. However, the necessary resource-demanding soft-input
soft-output algorithms require a high processing performance to
ensure real-time capability. In this paper, we will present a high-
speed implementation of a turbo equalizer for SDRs with digital
signal processing being performed on general purpose processors
(GPP). The implementation will utilize linear MMSE filtering
and suboptimal algorithms like overlapping sub-trellis MAX-
Log-MAP decoding, approximations of mathematical operations,
parallelization methods such as threading-based pipelining, and
processor specific optimizations like single instruction multiple
data (SIMD) commands. We will present the processing gains
for each optimization level, highlight the performance loss for
the suboptimal modifications and analyze the latency introduced
by the pipelined processing. So far, transmissions with data rates
up to 5.4 Mbit/s can be decoded in real-time with negligible
performance loss and tolerable delay.

I. INTRODUCTION

In the past few years, software defined radios (SDR)
have been introduced into various military, public safety and
industrial domains. Although the SDRs differ in their archi-
tecture, performance characteristics and power consumption,
the platforms are mostly equipped with a general purpose
processor (GPP) which handles the digital signal processing
of the waveforms’ physical layer. Besides the implementation
of existing narrow-band legacy waveforms, especially the
development of innovative wide-band networking waveforms
with support for high data rates is fostered currently. Mainly
due to the mobile use of SDRs in different environments like
mountainous or urban areas, the physical layer of a wide-band
waveform has to be designed for frequency selective fading
channels. This comprises a powerful forward error correction
as well as an efficient channel equalization in the receiver.

Turbo equalization combines the equalization and the de-
coding in an iterative manner. It has been shown to enable high
performance gains, in terms of bit error rates (BER), for the
described channel. The approach is based on turbo decoding
and was modified for equalization purposes by Douillard et al.
in 1995 [1] and extended to less complex linear filter-based
techniques by Tüchler et al. in 2002 [2]. The joint equal-
ization and decoding is performed by a soft-input soft-output
(SISO) equalizer and SISO decoder, which are separated by

an interleaver and deinterleaver respectively, and carried out
for a certain number of iterations. Given a received signal
of finite length with inter-symbol interference, each iteration
improves the decision reliability and hence reduces the bit error
probability compared to conventional receivers. Nevertheless,
this iterative procedure and the resource-demanding SISO
algorithms put high requirements on digital signal processors
to ensure real-time capability.

In this paper, we will implement a soft interference can-
cellation and linear minimum mean square error (SC-MMSE)
based turbo equalizer on a GPP concerning maximum data
rate. After introducing the system model in section II, we will
present different optimizations in section III, which focus on
suboptimal but less complex algorithms or exploit concurren-
cies within algorithms. Section IV describes the high-speed
implementation on an Intel c© CoreTM i7 GPP and highlights
the performance gains.

II. SYSTEM MODEL

A. The Received Signal

Based on a single carrier block-transmission, a sequence
of Nb independent and uniformly distributed information bits
b(n) = [b0(n), b1(n), . . . , bNb−1(n)]

T is encoded using a for-
ward error correction. The encoder produces Nc code bits c(n)
using Np generator polynomials g = [g0,g1, . . . ,gNp−1]. The
code bits are randomly interleaved and mapped to complex-
valued symbols x(n) using a QPSK modulation scheme with
a power of E{|x(n)|2} = 1. Each transmission block of Nx

modulated symbols is prefixed by its last Ncp symbols in order
to perform frequency domain equalization at the receiver.

We assume a frequency selective block fading channel
with an impulse response h(n) = [h0(n), h1(n), . . . , hNh−1]

T

and additive white Gaussian noise. Hence, after removing the
cyclic prefix, the received baseband signal is given by

y(n) = H(n)x(n) + n(n), (1)

where H(n) is the circulant channel matrix of size Nx ×Nx

and n(n) is the additive noise vector whose elements are
CN (0, N0) distributed. In the following, the elements (l, j)
of the Nx ×Nx Fourier matrix F are given by

F(l, j) = 1√
Nx

e
−i

2π
Nx

lj
, 0 ≤ l, j ≤ Nx − 1, i =

√
−1 (2)

and the channel transfer function in matrix notation as Ξ(n) =
diag(τ (n)) where

τ (n) =
√

Nx F[h
T (n),01×(Nx−Nh)]. (3)

�������
����	
��

������ ��
���

�������
������

���� ����

���������	
��
 �����������

Fig. 1. Block diagram of the SC-MMSE turbo equalizer

B. SC-MMSE Turbo Equalization

In order to recover the transmitted information sequence
b(n), equalization and decoding of the received signal y(n)
are performed iteratively. In theory, turbo equalization applies
two maximum a posteriori probability (MAP) based SISO
components, which exchange reliability information in terms
of log-likelihood ratios (LLR) for a given number of iterations
Nit. Whereas the complexity of a MAP-based decoder is
known and only depends on the channel code, the complexity
of a MAP-based equalizer is determined by the dynamic and
the length of the channel impulse response. Hence, MAP
equalizer are not feasible for mobile, power-limited systems
and need to be replaced by suboptimal methods. Soft cancel-
lation (SC) minimum mean square error (MMSE) equalization
in the frequency domain reduces the complexity using a linear
approach and incorporates the available a priori information
provided by the decoder. In the following, we will outline
the basics of the SC-MMSE turbo equalizer based on [3] for
a single iteration and drop the block index n for simplicity
reasons. The structure of the receiver is depicted in figure 1.

After calculating the Fourier transform of the observation in
(1), the SC-MMSE equalizer performs the soft cancellation by
subtracting the estimated received signal ΞFx̂. Due to the fact
that no a priori information from the decoder is provided in the
0th iteration, this cancellation is omitted in the initial phase.
Given the mean energy ϕ = x̂

H
x̂/Nx of the symbol estimates

and the MMSE equalization matrix Ψ in the frequency domain

Ψ =
ΞH

(1 − ϕ)ΞΞH +N0I
, (4)

the equalized signal ỹ, back in the time domain, is calculated
using

ỹ = FHΨ(Fy −ΞFx̂). (5)

Since only extrinsic information is exchanged between the
SISO components, the a priori information that was incor-
porated in the equalization so far, has to be suppressed, finally
resulting in the linear MMSE filtered output signal

z = (1 + γϕ)−1(ỹ + γx̂), (6)

where γ = 1/N Trace{ΨΞ} is the energy adjustment re-
quired due to the equalization. In order to map the complex-
valued sequence z = [z0, . . . , zk, . . . , zNx−1]

T to LLRs, the
probability distribution of a symbol zk has to be known. Ac-
cording to [2] and a QPSK modulation scheme with symbols
x ∈ {1/√2 (±1 ± i1)}, this distribution can be approximated
by

P (zk|xk = x) ∼ CN
(√

2 θx, σ2
z

)

, (7)

where θ = γ/(1 + γϕ) and σ2
z = θ(1 − θ) are given

by the previous calculated energy scaling factors. Finally,
the mapping to extrinsic LLRs generated by the equalizer
(superscript E) is given by

LE
2k =

√
2 Lc Re{zk} (8)

LE
2k+1 =

√
2 Lc Im{zk}, k = 0, 1, . . . , Nx − 1 (9)

where Lc = 2θ/σ2
z is the channel reliability. The follow-

ing deinterleaver ensures independent requirements [2] and
restores the natural code bit order.

Based on the a priori information LE from the equalizer
and the applied channel code g, the decoder generates new ex-
trinsic information LD (soft decoding) or, if the last iteration is
performed, provides an estimate of the transmitted information

sequence b̂ (hard decoding). Since the complexity of a MAP-
based decoder and hence the processing time is still a problem
for a high-speed GPP implementation, it will be replaced by
suboptimal overlapping sub-trellis MAX-Log-MAP algorithm
which is described in section III-A1.

After interleaving, the LLRs from the decoder are again
mapped to complex-valued symbols using

x̂k = 1√
2

(

tanh
(

1
2L

D
2k

)

+ i tanh
(

1
2L

D
2k+1

))

, (10)

where k = 0, . . . , Nx−1. The estimated symbols x̂ serve as a
priori information for the equalizer in (5). The turbo equalizer
performs a fixed number of iterations Nit, as explained above,
to reduce the number of bit errors in the estimated information
sequence b̂.

III. OPTIMIZATIONS

In this section, we will describe the optimizations we
applied to implement the SC-MMSE turbo equalizer described
in section II. As already mentioned, applying a BER-optimal
MAP-based equalizer is not feasible due to the complexity
of this approach. The length of the channel impulse response
and its dynamic lead to exponentially growing complexi-
ties not applicable for mobile and power-limited SDRs. The
complexity of the linear MMSE approach with frequency
domain equalization is primarily independent of the length
of the channel impulse response and corresponds to classical
equalizer techniques [2]. A slight difference follows from
the incorporated a priori information that is provided by the
decoder. In the following, the optimizations will cover the
domains:

• suboptimal algorithms and approximations,

• pipelining, and

• processor specific optimization.

The implementation and the results of each optimization are
outlined in section IV.

A. Suboptimal Algorithms and Approximations

1) Overlapping Sub-Trellis MAX-Log-MAP Decoder: The
MAX-Log-MAP algorithm [4] performs a suboptimal maxi-
mum a posteriori probability (MAP) decoding based on the
channel code and is derived from the BCJR algorithm [5].
Compared to the original approach, the calculations are carried

���������	
��������������	
����� �
���������

���	�����	
�������������

���������
�������	

�������
���
����	

��������
���
����	

�����������
����	�����������
����	

������������
����	������������
����	

Fig. 2. Overlapping sub-trellis MAX-Log-MAP decoder

out in the logarithmic domain to avoid numerical instabilities.
The second modification replaces the complex state metric
updates by simple maximum (MAX) operations. Since the
algorithm still mainly consists of recursive structures, which do
not allow parallelization, the decoding is performed on data-
independent sub-trellises. In the following, the overlapping
sub-trellis MAX-Log-MAP decoder is described in more detail
with respect to parallelization capabilities.

The decoder comprises four units (s. fig. 2) to yield the soft
decoded extrinsic LLRs LD and the hard decoded information
bits b̂ on its output. Based on the input LLRs LE of length Nc,
which correspond to the reliability of each code bit decision,
the logarithmic probabilities γk,t for all valid trellis transitions
t are given by

γk,t =

Np−1
∑

m=0

log

(

1

1 + e
(1−2um,t)LE

kNp+m

)

, (11)

where um,t ∈ {0, 1} is the code bit of the encoder at
position m for a given transition and k = 0, 1, . . . , Nx − 1.
Since (11) shows no data dependencies, it can be calculated
independently in both time (k) and transition (t) direction,
allowing a high order of parallelization. The next step is the
recursive computation of the trellis’ state metrics. As already
mentioned, the metrics αk,s of the forward recursion are given
by

αk+1,s = MAX(αk,s′ + γk,t′ , αk,s′′ + γk,t′′), (12)

where t′ and t′′ are the merging transitions in s, and s′ and
s′′ are the corresponding origins as depicted in the lower
part of figure 2. Similarly, the metrics βk,s are determined
by traversing the trellis in the opposite direction (backward
recursion). Due to the fact that each recursion requires a

�4 �3 �2 �1 0 1 2 3 4

�1

�0.5

0

0.5

1

x

f(
x)

tanh(x)

PLA of tanh(x)

Fig. 3. Piece-wise linear approximation (PLA) of hyperbolic tangent

defined starting point, the encoders’ states at the beginning
and the end of a transmission frame of length Nc are known
to the receiver. Given the metrics and the logarithmic transition
probabilities for all transitions and states in the trellis, the soft
and hard decision can again be performed independently for
all time steps in the trellis.

However, the data-dependent calculation of the state met-
rics in conjunction with commonly long decoding lengths
proves to be the bottleneck of the algorithm. To exploit
parallel structures, the entire decoding of the input sequence is
divided into L data-independent sub-trellises of equal length
Ns = Nx/L. The calculation of αk,s and βk,s remains
unchanged. Only the state metrics at the beginning and at the
end of a sub-trellis need to be determined. Thus, the actual
computation is expanded by M transitions in both directions
overlapping the previous and the following sub-trellis (s. fig.
2), where M corresponds to the Viterbi traceback depth of 5
times the encoders memory length. The performance loss due
to the shortened decoding lengths is depicted in figure 5.

2) Approximations of Mathematical Functions: Complex
mathematical operations like trigonometric or exponential
functions are provided by software libraries and implemented
by approximation procedures or lookup tables. Compared to
basic operations like multiply or add, the processing com-
plexity and hence the time clearly predominates. However,
complex operations can be avoided and replaced by piece-wise
linear approximations. The domain of a function definition is
subdivided and the function linearly approximated within each
subdomain yielding a reduced processing complexity.

Since the turbo equalizer described in II-B applies several
complex mathematical operations like the hyperbolic function
tanh(·) in (10), the processing can be accelerated by piece-
wise linear approximations. Figure 3 shows an exemplary
approximation using three subdomains.

B. Pipelining

Due to the shared memory and multi-core architecture of
modern GPPs, applications need to be parallelized in order to
exploit the entire processing power. Although parallelization
can be applied to a given problem in several ways, the overhead
caused has to be considered. Since threads of an algorithm have
to be started, managed and finally merged, the parallelized task
has to predominate this overhead in order to achieve a speedup.

Pipeline

Pipe 1
(0th Iteration)

Pipe i Pipe Nit+1
(Nit

th Iteration)

Buf. Buf.

Fig. 4. Block diagram of a pipelined SC-MMSE turbo equalizer

The parallelization of the turbo equalization is performed
by using a pipeline design as depicted in figure 4. Each
iteration i = 0, 1, . . . , Nit of the turbo process is implemented
as a single pipe which takes the observation y of duration Tf

and the estimated symbols x̂ (a priori information, index i) as
inputs. The outputs are again the estimated symbols (index o)
after one iteration and the estimated transmitted information
bits b̂. Due to the special status of the first and the last
element in the pipeline, these pipes need to be connected
differently. For the first pipe, a priori information is not
available and has to be set to zero. Furthermore, the last pipe
does not need to provide any further signals except the hard
decoded information bits. Due to this step-by-step approach,
the observation needs to be delayed one sequence duration
before passing it to the subsequent pipe.

The advantage of the pipeline design follows from the
created independence among the pipes. Assuming a single-
core GPP with a CPU core that requires equal amount of time
δ1 for each turbo iteration, real time constraints can only be
met when

δ1 ≤ Tf

1 +Nit

. (13)

If the turbo equalizer is implemented as a pipeline on a multi-
core GPP and the pipeline is filled (each buffer keeps data),
pipes can be mapped individually to CPU cores and be per-
formed in parallel during one pipeline step. Thus, the required
processing time for one turbo iteration can be enhanced to

δn ≤ Tf
⌈

1+Nit

n

⌉ , (14)

where n is the number of CPU cores, ⌈·⌉ the ceiling-operator
and any overheard due to scheduling is ignored. On the other
hand, if no real time constraints are imposed and the processing
time for one iteration on a CPU core is the same on both
processors, an estimate for the theoretical speedup sn on the
multi-core GPP is given by

sn =
1 +Nit
⌈

1+Nit

n

⌉ . (15)

The major drawback of the pipeline design is the intro-
duced latency. The delay is at least increased by the time
NitTf , since the last pipe decodes an observation that was
made Nit pipeline steps before. Furthermore, the pipeline
has to be flushed (reinitialized) first, in order to reset the
turbo equalizer. Pipeline related difficulties like data or control
hazards need to be considered in the implementation.

C. Processor Specific Optimization

Although processor specific optimization, as the name
implies, depend on the given processor, some optimizations
are generally applicable to a large group of processors, resp.
a processor family like x86-based GPPs.

Since modern GPPs come with multiple processing units
within one CPU core, data level parallelism can be exploited.
This single instruction multiple data (SIMD) architecture is
intended for multimedia purposes and allows elementary bit or
mathematical operations on a group of input values simultane-
ously. The number of parallel mathematical operations, which
is the more relevant case for signal processing, depends on
the register length of the processing unit and the word length
of an input value. For example, if the values are quantized
by a floating point representation of 32 bit, 8 operations
can be performed on an 128 bit processing unit in parallel
with, compared to a classical unit, a theoretical speedup of 8.
Processor specific SIMD solutions like Intel’s SSE or AMD’s
3DNow! exist and can be used by software interfaces.

Due to the fact that most signal processing within the turbo
equalizer is performed on vectors and comprised of elementary
mathematical operations like add, multiply, etc., SIMD tech-
niques can be applied to many processes. Computations like
(5) need to be split into elementary operations (subtraction,
multiply) and mapped to appropriate SIMD commands. How-
ever, the independence of the operations among each other has
to be ensured in order to avoid data hazards.

IV. IMPLEMENTATION AND RESULTS

A. Setup

To evaluate the optimizations presented in section III,
the SC-MMSE turbo equalizer is implemented in C on an
Intel c© CoreTM i7-2600 CPU (3.40 GHz) GPP with four CPU
cores. The GPP is supported by an NVIDIA GeForce 8400
GS graphics processing unit (GPU). We use a Linux-based
operating system and the GNU compiler collection (GCC)
in version 4.6.3. The length of the observation is set to
Nx = 2560 complex-valued samples. The data bits are error-
protected using an IEEE 802.11 compliant channel code that
is designed by the polynomials [1338, 1718]. The number of
turbo iterations is either set to 0 (non-turbo case), 3 or 10.
Perfect time and frequency synchronization as well as perfect
channel state information are assumed.

B. Programming

Besides standard C libraries, the following application
programming interfaces (API) are used to implement the
optimized version of the SC-MMSE turbo equalizer:

• Pthreads (POSIX threads [6])
Framework for creating and manipulating threads in
order to exploit the parallelism of a GPP.

• VOLK (Vector-Optimized Library of Kernels [7])
Portable library to target the most suitable SIMD
architecture of a GPP.

• OpenCL (Open Computing Language [8])
Framework to implement applications across hetero-
geneous platforms consisting of different processing
units like GPPs or GPUs.

TABLE I. OPTIMIZATIONS RESULTS

Optimization 0 iterations 3 iterations 10 iterations

R S R S R S

None 632 1.00 152 1.00 55 1.00

Approximations 631 1.00 154 1.01 56 1.02

Pipelining 606 0.96 552 3.63 215 3.90

SIMD 672 1.06 163 1.07 59 1.07

GPU coprocessor 4963 7.85 735 4.84 205 3.73

All 5448 8.62 3482 22.91 1877 34.13

R=Data rate in kbps; S=Seepdup

• FFTW (Fastest Fourier Transform in the West [9])
Highly optimized software library for computing dig-
ital Fourier transforms.

Using Pthreads, the turbo iterations, resp. pipes, are imple-
mented as threads and allocated to the four CPU cores during
runtime. Hence, a maximum number of 4 iterations can be
performed in parallel on the GPP. Due to the fact that the SISO
decoder proves to be the bottleneck of the implementation,
it is swapped to the GPU. The GPU acts like a coprocessor
and performs the four computational units of the parallelized
MAX-Log-MAP algorithm by invoking OpenCL kernels. The
number of sub-trellises was set to L = 4 resulting in a partial
decoding length of Ns = 640. During each turbo iteration, two
Fourier transforms (frequency domain equalization and soft
cancellation) of length 2560 are implemented using FFTW.
The SIMD architecture that was detected by VOLK is avx
mmx. Furthermore, we use the single-precision floating-point
format (float) and define all system constants by preprocessor
directives.

C. Results

Table I summarizes the measured data rates of the different
optimizations. The speedup is determined with respect to the
processing time of a non-optimized SC-MMSE turbo equal-
izer. The results show, that the highest processing gains are
achieved by exploiting the parallelism of both processors. The
scheduling overhead of the threading API amortizes with the
number of turbo iterations and achieves a speedup of 3.90 for
10 iterations. The outsourcing of the MAX-Log-MAP decoder
to the GPU further boosts the entire implementation by a
maximum factor of 7.85. In contrast, the approximations of
mathematical functions and the use of the SIMD architecture
prove to be impractical and barely improve the data rate. Due
to the fact that the presented optimizations are orthogonal and
do not interfere, they can be applied at once resulting e.g. in
data rates up to 3.4 Mbps for 3 iterations.

As depicted in figure 5, the performance loss due to the
suboptimal overlapping sub-trellis MAX-Log-MAP algorithm
and the approximations can be neglected for more than 3
iterations. For the non-turbo case, the loss is less than 0.5 dB
for 16 sub-trellises and can again be disregarded for the
implemented version (L = 4). The introduced latency of the
pipeline design accounts 2.94 ms and 15 ms for 3 and 10
iterations respectively. In comparison to the requirements for
a time critical service like voice over IP, this delay can be
ignored.

0 iterations

3 iterations

10 iterations

E /N [dB]b 0

2 3 4 5 6 7 8

0
10

-1
10

-2
10

-3
10

bi
t e

rr
or

 r
at

e
(B

E
R

)

Theory, N =2560x

Approximation, L=2

Approximation, L=4

Approximation, L=8

Approximation, L=16

Fig. 5. Performance of the SC-MMSE turbo using approximations and the
overlapping sub-trellis MAX-Log-MAP decoder

V. CONCLUSION

In this paper, we presented different optimizations to per-
form a high-speed SC-MMSE turbo equalization on a GPP-
based SDR. The optimizations covered suboptimal algorithms
and approximations, pipelining, and processor specific op-
timization. We used free APIs for the implementation and
evaluated the optimizations on an Intel c© CoreTM i7 GPP with
4 CPU cores. The results showed, that the best performance
gains are achieved by exploiting the parallelism of the GPP
and using the GPU as coprocessor for the SISO decoding. The
BER loss due to the suboptimal algorithms and approximations
can be neglected.

REFERENCES

[1] C. Douillard, M. Jezequel, C. Berrou, P. Didier, and A. Picart, “Iterative
correction of intersymbol interference: Turbo-equalization,” European

Trans. Telecommun., vol. 6, no. 5, pp. 507–512, Sep. 1995.

[2] M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles
and new results,” IEEE Trans. Commun., vol. 50, no. 5, pp. 754 –767,
May 2002.

[3] K. Kansanen and T. Matsumoto, “An analytical method for MMSE
MIMO turbo equalizer EXIT chart computation,” IEEE Trans. Wireless

Commun., vol. 6, no. 1, pp. 59–63, Jan. 2007.

[4] P. Robertson, E. Villebrun, and P. Höher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
Proc. IEEE Int. Conf. Commun., Jun. 1995, pp. 1009–1013.

[5] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20,
no. 2, pp. 284–287, Mar. 1974.

[6] “IEEE Standard for Information Technology - Portable Operating System
Interface (POSIX R©) - System Application Program Interface (API)
Amendment 2: Threads Extension (C Language),” IEEE Std. 1003.1c-
1995, 1995.

[7] (2013, Sept.) Vector-optimized library of kernels (VOLK). [Online].
Available: http://gnuradio.org/redmine/projects/gnuradio/wiki/Volk/

[8] (2013, Sept.) OpenCL - The open standard for parallel
programming of heterogeneous systems. [Online]. Available:
http://www.khronos.org/opencl/

[9] (2013, Sept.) Fastest Fourier transform in the west (FFTW). [Online].
Available: http://www.fftw.org/

