A LTE Receiver Framework Implementation in GNU Radio

Johannes Demel, Sebastian Koslowski, Friedrich K. Jondral
Contents

- LTE air interface overview
 - Basic system parameters
- Project roadmap
- Implementation
 - Implementation overview
 - Synchronization
 - OFDM operation
 - Physical channel decoding
 - Test with recorded data
- Performance results
- Conclusion
LTE overview

Air interface basics (downlink)
- OFDM signal (15 kHz subcarrier bandwidth)
- different modes possible
 - variable bandwidth (up to 20 MHz)
 - MIMO capabilities (up to 4x4)
- 6 physical channels
 - 3 transport channels
 - 3 control information channels
Roadmap

Tasks
- synchronization
 - time, frequency, frame timing
- OFDM operation
 - radio channel estimation, equalization
- demodulation
 - STBC, FEC
 - physical channel demultiplexing
- extract system parameters
 - cell ID
 - MIMO configuration
 - system bandwidth

Implementation goals
- modular block-based structure
- separate handling of data and control information
- use stream- and event-based processing
Implementation overview

Receiver framework components at work: Example flowgraph with MIB decoding
Synchronization

cyclic prefix (CP)-based synchronization

- recover coarse symbol timing \hat{n}_0
- calculate sliding window correlation with fixed lag of N_{FFT}

$$\hat{n}_0 = \arg \max_n |\gamma(n)|, \quad \gamma(n) = \sum_{m=n}^{n+N_{\text{CP}}-1} r(m) r^*(m - N_{\text{FFT}})$$

- stream tags
 - tags indicate symbol start
Synchronization

primary synchronization symbol (PSS) detection
- recover fine symbol timing and half-frame timing
- extract cell ID number N_{ID2} from PSS
- stream tags
 - indicate half-frame start
 - propagate cell ID number N_{ID2}
Synchronization

frequency offset detection and correction
- recover fractional frequency offset
- half-frame timing needed
 - different CP-lengths within each slot
Synchronization

- secondary synchronization symbol (SSS) detection
 - recover frame timing
 - extract cell ID group N_{ID1}
- receive N_{ID2} tag
 - calculate cell ID $N_{ID} = 3 \times N_{ID1} + N_{ID2}$
- message port
 - publish N_{ID} for dynamic block configuration
- stream tags
 - indicate frame start
OFDM operation

- inverse OFDM operation
 - remove cyclic prefix
 - compute FFT
 - extract subcarriers of interest
 - complexity reduction

- channel estimation
 - get pilot positions
 - calculate channel coefficients
 - linearly interpolation
 - output data stream and channel estimates for antenna port 0 and 1

A LTE Receiver Framework Implementation in GNU Radio
Johannes Demel, Sebastian Koslowski, Friedrich K. Jondral
Implementation overview

Receiver framework components at work: Example flowgraph with MIB decoding
Decode PBCH

- MIMO configuration still unknown at this point
 - trial & error: different configurations interleaved in output
- inverse Alamouti Operation
- deinterleave layers
- demodulation: PBCH always uses QPSK
- descrambling
 - scrambling sequence depends on N_{ID}
Decode BCH

- BCH is transmitted on PBCH
- Deinterleaving (block-based)
- Viterbi decoder
 - hierarchical block
 - parameterized GNU Radio Viterbi decoder
- Calculate CRC
 - CRC checksum depends on MIMO configuration
 - CRC match indicates number of TX antennas
Implementation overview

Receiver framework components at work: Example flowgraph with MIB decoding

OFDM operation

Channel Estimator
Resource blocks: 6
tag key value: symbol

PBCH demux
Resource blocks: 6

Decode PBCH

Decode BCH

MIB unpack

SSS Synchronization
FFT length: 2.048k

Remove CP
FFT length: 2.048k
tag key value: symbol

Extract occupied tones
resource blocks: 6
FFT length: 2.048k

CP-based Synchronization
FFT length: 2.048k

PSS Synchronization
FFT length: 2.048k

CP freq Estimation
FFT length: 2.048k

synchronization

SFN
N_ant
N_rb_dl
phich_duration
phich_resources
Test with recorded data

- IQ baseband samples as input
 - recorded using a USRP N210
- flowgraph output
 - fixed parameters
 - MIMO: 2x1
 - RB: 50 equals 10 MHz
 - PHICH parameters
 - system frame number
- decoding rate 97.8%
- tests indicate real time capabilities
Effect of sample rate on performance

- varying sample rate
 - FFT-length depends on sample rate

- relative performance changes
 - lower sample rate
 - less multiplications
 - smaller correlation sequences
 - smaller FFT-length

![Graph showing Instruction Fetch per block with FFT-length as 2048 and 512]
Effect of computed resource blocks on performance

- varying number of RBs
 - FFT-length always 2048
 - number of RBs limited by FFT-length
- channel estimation is more complex
- great increase of power consumption in OFDM part

![Instruction Fetch per block graph]

- Synchronization
- OFDM
- Decode PBCH
- Decode BCH
- MIB

Number of RBs:
- 100
- 6
Conclusion

- LTE overview
 - introduction to our GNU Radio LTE receiver
 - synchronization, OFDM operation, PBCH extraction
 - example output
 - performance analysis
 - different parameters
- possibilities
 - Detect LTE cells with parameters
- What’s next
 - extend flowgraph with additional channels and uplink
- source code available at github.com/kit-cel/gr-lte
Thanks for your attention!

gr-lte source code available at github.com/kit-cel/gr-lte