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Abstract—By transmitting multiple copies of an arbitrary
(frequency modulated) continuous wave radar signal, phase
information in target echoes can be exploited for detection. The
phase information is gained by calculating the sample variance of
phase spectra of the multiple echoes. In this manner, phase and
amplitude information is available at the detector. The optimal
detector decides based on two-dimensional decision regions in the
amplitude/phase-variance space. Suboptimal detectors combine
two one-dimensional decisions. It is shown, that the proposed
method improves detection performance especially at low signal
to noise ratios. The optimal detector achieves a gain in detection
rate compared to the conventional square law detector of nearly
10% at a signal to noise ratio (SNR) of 3 dB. The performance
gain reduces to about 3% at a SNR of 9 dB. One of the suboptimal
detectors also outperforms the conventional detector, but achieves
lower gains in detection rates than the optimal detector.

Keywords—Detection, CW, FMCW, Radar, DSP, ROC, Wave-
form Design

I. INTRODUCTION

A figure of merit representing the performance of a radar
detector is the Receiver Operating Characteristic (ROC). The
ROC shows the interrelation between detection rate (DR) and
false alarm rate (FAR) at a given signal to noise ratio (SNR)
for the given radar detector.

It is known, that in theory, the optimal radar detector is
the coherent one, which makes use of both amplitude and
phase information of the received signal [1]. However, usually
in radar and especially when using (frequency modulated)
continuous wave radar signals, it is difficult to make use of
the phase information. Thus, practical detectors like the linear
or the square law detector base their decisions solely on the
information contained in the amplitude of the signal [1].

In this paper, a new method for detection is proposed,
which alters the radar waveform in such a way that the phase
information can be exploited for detection. This is achieved
by multiple transmission of the same waveform and jointly
processing the multiple echoes. The multiple transmissions
obey an energy constraint, such that a fair comparison with
conventional detectors is possible.

II. SIGNAL MODELL

We assume a continuous wave radar signal which may
or may not be frequency modulated. Let fWF,i(t) be the
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instantaneous frequency of signal i at time t, then

si(t) = as,i cos



2π

t
∫

0

fWF,i

(

t̃
)

dt̃+ φ0,i



 (1)

is the real signal being transmitted, where φ0,i is the starting
phase at t = 0 and as,i is the amplitude of the signal. The
variable i is used for enumeration and will be needed in
order to introduce the modified signal. Waveforms which can
be modeled by (1) are very popular for low-cost radars, as
they can be implemented using a voltage controlled oscillator
(VCO) and a homodyne receiver architecture and currently
experience much attention in industrial and automotive appli-
cations [2]. In the following we will focus on linear frequency
modulated (LFM) waveforms [3], where

fWF,i(t) =

{

B
T
t+ fi = αt+ fi, 0 ≤ t < T

0, otherwise
(2)

with B beeing the sweep bandwidth, T the chirp duration and
fi the lower end of the used frequency band. For the case of
no frequency modulation, which is commonly known as single
frequency continuous wave (CW) radar or doppler radar, in (2),
let B = 0 ⇒ α = 0 ⇒ fWF,i(t) ≡ fi.

The energy ET,i of waveform i can be expressed in terms
of the energy ET,i,1 of the waveform with unit amplitude:

ET,i =

T
∫

0

|si(t)|2dt = a2s,iET,i,1 (3)

Assuming a point target at a distance R, which is moving
at constant radial velocity vr towards the radar, the echo signal

ei(t) = ae,i cos



2π

t
∫

0

(

fWF,i

(

t̃− τ
)

− fD,i

)

dt̃+ φ0,i





(4)
is a time and frequency shifted version of (1) with

τ =
2R

c
(5)

being the two-way time delay and

fD,i ≈
2vr
c

(

fi +
B

2

)

(6)

the doppler shift. The approximation in (6) holds for vr ≪ c
and B ≪ fi. Furthermore ae,i is the echo amplitude, which



can be computed using the radar range equation [1] and the
constant c in (5) and (6) is the speed of light.

The receiver sees a disturbed version of the echo signal (4).
In the following, we assume real zero mean additive white
gaussian noise (AWGN) for the disturbance modeled by the
stochastic process n(t):

ri(t) = ei(t) + n(t) (7)

III. HOMODYNE RECEIVER AND NON-COHERENT

DETECTOR

In this section, the conventional processing of continuous
wave radar signals at the receiver, which consists of stretch
processing [4] and amplitude detection [1], is briefly summa-
rized. We are assuming a digital baseband processor.

A. Stretch Processing: Downconversion to Complex Baseband

The LFM waveform can be downcoverted to complex
baseband using a homodyne receiver architecture, where the
received high frequency signal is mixed directly with the
transmitted signal and with a 90◦ phase shifted version thereof,
a technique known as stretch processing [4]. This leads to the
complex baseband signal

qi(t) = LPFfb,max

{(

si(t) + jsi(t− τπ
2
)
)

ri(t)
}

(8)

=
as,iae,i√

2
e−j2π((fD,i+ατ)t+(ατ

2
+fD,i−fi)τ) + zi(t) (9)

≈ ay,ie
−j2π((fD,i+ατ)t+(fD,i−f0)τ) + zi(t) (10)

, yi(t) + zi(t). (11)

In (8), LPFfb,max
{·} denotes the filtering with a low pass filter

(LPF), which has a passband reaching till the maximum ex-
pected beat frequency fb,max and j denotes the imaginary unit.
The term zi(t) in (9) till (11) denotes the complex baseband
noise, which is assumed to be a low pass filtered complex
zero mean circularly symmetric white gaussian noise process
with variance σ2. Furthermore, the zi(t) are independent and
identically distributed, since they originate from different parts
of the spectrum. In (10), the residual video phase −ατ2 [4]
has been neglected, which is feasible in typical short range
scenarios and when the ramp steepness α is moderate.

B. Detection and Parameter Estimation

Assuming, the detector operates in the digital domain on
the complex baseband signal sampled at a rate of

fS =
1

TS
≡ fb,max. (12)

Then the sampled signal is

xi(n) , yi(nTS) + zi(nTS) (13)

= ay,ie
−j2π((fD,i+ατ)nTS+(fD,i−fi)τ) + zi(nTS). (14)

If the sampling frequency is chosen according to (12), then
the complex noise samples zi(nTS) are uncorrelated from each
other [1].

The parameters of interest in (14) are amplitude ay,i, beat
frequency fb,i , fD,i + ατ and phase φy,i , (fD,i − fi)τ
of the complex sinusoid, all which can be estimated using

spectral estimation techniques [5]. For example by calculating
the complex spectrum using a normalized N-point FFT:

Xi(k) =
1

N
FFTN {xi(n)} (15)

In the case of a single target,

k̂ = argmax
k

|Xi(k)|, (16)

yields the maximum likeliehood (ML) estimate of the target
beat frequency when phase is unknown [6]. In multitarget
scenarios, threshold detection performed by comparing the am-
plitude of the complex spectrum with a threshold γ̃ yields near-
ML performance, when the targets are sufficiently separated
[6]. This is called the linear detector [1]. Denoting the hy-
pothesis that a target is present by H1 and the Nullhypothesis,
which declares that no target thus only noise is present, by H0,
then the detection rule of the linear detector can be written as

|Xi(k)|
H0

≶
H1

γ̃. (17)

Another suboptimal detector is the square law detector [1],
which decides based on the power estimate of the signal
samples

|Xi(k)|2
H0

≶
H1

γ (18)

with the threshold γ 6= γ̃.

The other two parameters of interest in (14) can be esti-
mated from the frequency estimate [6]:

ây = |Xi(k̂)| (19)

φ̂y = ∠Xi(k̂) (20)

C. Receiver Operating Characteristic

The performance of a detector is determined by its proba-
bility of detection PD and its probability of false alarm PF at
a given SNR, where

PD = P{E1|H1}, (21)

PF = P{E1|H0}, (22)

with E1 being the event that the detector decides for a target
being present.

The fundamental dilemma in detector design (how to
choose the threshold) is that the two probabilities (21) and
(22) are coupled. The receiver operating characteristic (ROC)
is a figure of merit for detectors showing the tradeoff between
these two probabilities. One common representation is

PD = f(PF, SNR, . . .), (23)

where other parameters besides the signal to noise ratio (SNR)
are detector specific, such as e.g. integration rules.



IV. PROPOSED METHOD

By using (17) or (18) for detection, one discards any in-
formation contained in the phase ∠Xi(k). Thus, both decision
rules are suboptimal.

The dilemma is, that although the phase of the target echo
in (15) is deterministic, as its value is not known prior to
detection, it is not useful for the detector. In the following,
a modification of wafevorm (1) is proposed in order to solve
this dilemma and thus improve the ROC while maintaining
the same target illumination energy and time as when using
the unmodified signal, which hereafter will be referred to as
conventional signal.

A. Waveform Modifications

The proposed waveform, which allows to exploit phase
information for detection, will be referred to as M-fold signal.
It is derived from the conventional signal (1) by introducing
the following modifications:

1) M−fold multiple simultaneous transmissions of the
conventional signal

2) Reduction of the transmitted power of each copy of
the conventional signal by a factor of M

In transmitting M copies of the conventional signal simul-
taneously, any time constraints for target illumination are still
met. The power reduction is necessary in order to meet a power
constraint and in order to allow a fair comparison with the
conventional signal by ensuring the same target illumination
energy.

Multiple transmissions of the same signal, which is the
main modification proposed, allow comparing the estimated
phase values of the resulting multiple echoes, which in turn
can be used as an additional detection criterion. For a target
present (H1), the M phase values are correlated, where the
correlation coefficient depends on the SNR. The higher the
SNR, the higher the correlation and thus the less the differences
in value. For no target present (H0), the M phase values are
independent from each other and thus very likely to be of very
different value.

The possibilities for multiple simultaneous transmissions of
LFM waveforms are limited. Taking into account that separa-
tion in the polarization state does not lead to separated echoes
if the polarization scattering matrix of the target has non-zero
entries off the diagonal and spread spectrum techniques would
alter the waveform itself, separation in the frequency domain
is the remaining option, which is what we are using.

The M-fold signal consists of M copies of the conventional
signal (1), which are separated in frequency domain and scaled
in amplitude:

sΣ(t) ,
1√
M

M
∑

i=1

si(t) (24)

with si(t) as in (1) and

fi = f0 + i∆f, (25)

where ∆f is the frequency difference in between the signal
copies and f0 the lower frequency bound of the M-fold signal.
With definition (24), the energy of the M-fold signal is

ET,Σ =

T
∫

0

|sΣ(t)|2dt = a2s,iET,i,1 = ET,i, (26)

which is the same as the energy (3) of the conventional signal.

B. Receiver Design

Assuming a target with the same properties as in sec. II,
the echo of the M-fold signal is a superposition of the echoes
of each copy of the conventional signal:

eΣ(t) =
1√
M

M
∑

i=1

ei(t), (27)

which will be superimposed by noise at the receiver:

rΣ(t) = eΣ(t) + n(t), (28)

where n(t) is a real AWGN process with the same character-
istics as in (7).

The receiver processes signal (28) by quadrature mixing
with each transmitted signal copy individually and subsequent
filtering with a LPF as in (8), yielding

qΣ,i(t) = LPFfb,max

{
(

si(t) + jsi(t− τπ
2
)
)

rΣ(t)√
M

}

≈ 1

M
yi(t) +

1√
M

zi(t), (29)

where the approximation in (29) is due to neglecting the RVP
and the noise process zi(t) is a complex AWGN process with
the same characteristics as in (10).

The subsequent analog digital conversion and FFT-
processing is analogous to (13) and (15) yielding

XΣ,i(k) =
1

N
FFTN {xΣ,i(n)} (30)

with

xΣ,i(n) ,
1

M
yi(nTS) +

1√
M

zi(nTS). (31)

C. Detector exploiting Amplitude and Phase Information

In order to make use of both amplitude and phase informa-
tion, a naive detection strategy consists of the following three
steps:

1) Square law detection using the complex sum of the
M received spectra

XΣ(k) ,

∣

∣

∣

∣

∣

M
∑

i=1

XΣ,i(k)

∣

∣

∣

∣

∣

2
EA,0

≶
EA,1

γ, (32)

where γ is the detection threshold and EA,0 (EA,1) is
the decision that no target (a target) is present based
on the amplitude information.

2) Exploiting the M phase spectra ∠XΣ,i(k) for detec-
tion by comparing them with each other leads to the
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Fig. 1. Effect of calculating the sample variance of the phase values in
M = 3 spectra. In a), three amplitude spectra are shown without noise. The
according noisy phases are shown in b) and in c) we can see the effect of
calculating the sample variance of the three phase spectra.

decision Eφ,0 (Eφ,1) that no target (a target) is present
based on the phase information.

3) Combining both decisions to the final detection result.

Under the assumption

M∆f ≪ fi ⇒ fD,1 ≈ fD,2 ≈ . . . ≈ fD,M , fD (33)

and thus
fb,1 ≈ fb,2 ≈ . . . ≈ fb,M , fb, (34)

it can be shown that (32) fully recovers the performance of
(18), since then, all signal energy is concentrated at fb and
thus the SNR of XΣ(k) equals the SNR of Xi(k) in (15).

The next question is how to compare the M baseband
phase spectra. With the reasoning that the phases of noise
only samples are uncorrelated between these spectra, since they
originate from different regions of the passband spectrum, but
signal plus noise samples are highly correlated between the
baseband spectra and thus very likely to have similar values,
calculating the sample variance leads to a useful detection
statistic. Since the sample mean is not known a priori, we use
the unbiased sample variance estimator on the phase samples
and define this as estimated phase-variance:

Varφ,M (k) =
1

M − 1

M
∑

i=1

(

∠XΣ,i(k)−
1

M

M
∑

i=1

∠XΣ,i(k)

)2

(35)
The effect of calculating (35) for three (M = 3) noisy spectra
as defined in (30) is illustrated in fig. 1: the lower Varφ,M (k),
the higher the probability, that bin k contains a signal sample.
Thus, the detection rule using the estimated phase-variance is

Varφ,M (k)
Eφ,1

≶
Eφ,0

γφ, (36)

where γφ is the according threshold.

A combination of (32) and (36) leads to a practical but
suboptimal detection rule. Using e.g. logic AND yields

E = Eφ ∧ EA (37)
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Fig. 2. Suboptimal decisions based on logic AND and logic OR combinations
of the two decisions taken based on the amplitude and the phase-variance
information lead to rectangular decision regions in the amplitude/phase-
variance space. In a), the region for combination by logic AND (37) and
in b), the region for combination by logic OR (38) is illustrated. Inside the
black area, the decision for presence of a signal is taken, whereas outside, it
is decided for signal absence.

and logic OR yields

E = Eφ ∨ EA, (38)

where E denotes the final decision. The decision rules (37)
and (38) lead to rectangular regions in the amplitude/phase-
variance space, which are illustrated in fig. 2.

An optimal detection rule based on the two decision
variables VarΦ,M (k) and XΣ(k), can be found by deriving the

two-dimensional probability density functions (pdfs) p~Ξ,n(
~ξ)

for the case of noise only and p~Ξ,s(
~ξ) for the case of signal plus

noise, where ~ξ = ( XΣ VarΦ,M )
T

with (·)T denoting the
vector transpose. The index k has been dropped intentionally,
as it is not needed here. Deriving these probability densities
is quite challanging due to the correlation between the two
random variables and the fact that the sample variance depends
on the sample mean, which is why for a first evaluation of the
proposed method, we have resorted to simulations.

V. SIMULATIONS AND ANALYSIS

The evaluation of the proposed method is based on sim-
ulations of the baseband signal samples in frequency domain
assuming (33) holds. Then (30) can be modeled by a complex
circular symmetric gaussian random variable with zero mean in
the case of noise only and with a mean equal to the amplitude
of the signal including FFT processing gain in the case of
signal plus noise. All simulations are based on 107 samples and
the number of signal copies for the M-fold signal is M = 5.

A scatter plot of 600 realizations per case (noise only,

signal plus noise) of the decision vector ~ξ for a post processing
SNR of 6 dB is shown in fig. 3. It hints, that the proposed
method should outperform detectors based on pure amplitude
information, if decision regions are well chosen.

This hypothesis is strengthened, when taking a look at the
empirical probabiliy density functions for the decision vector
at the same SNR of 6 dB, which are depicted in fig. 4 for the
case of noise only and for the case of signal plus noise.

Optimal decision regions, which have been found based on
the estimated likelihood ratio

l̂(~ξ) =
p̂~Ξ,n(

~ξ)

p̂~Ξ,s(
~ξ)

, (39)
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of the decision vector ~ξ at a SNR of 6 dB and M = 5. Black crosses denote
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decision vector ~ξ for both cases (nois only, signal plus noise) at a SNR of
6 dB and M = 5.

are shown in fig. 5 for a SNR of 6 dB and false alarm rates
of 10−3, 10−2 and 10−1. It can be seen that, as predicted, the
regions are not rectangular. Thus, the optimal detection rule for
the proposed method is based on areas in the two-dimensional
decision space, which cannot be trivially decomposed into two
one-dimensional regions.

In order to compare the detectors, ROCs have been derived
for various SNRs using the following detectors:

• Square law detector on the conventional signal (18),
which will serve as reference

• Square law detector on the M-fold signal (32)

• Detector using only phase information of the M-fold
signal (36)

• Detector combining the decisions based on phase (36)
and amplitude information (32) of the M-fold signal
by logic AND (37)

• Detector combining the decisions based on phase (36)
and amplitude information (32) of the M -fold signal
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Fig. 5. Optimal decision regions for different false alarm rates at a SNR
of 6 dB and M = 5, which have been found using likelihood ratios of the
empirical probability density functions. The black region yields a false alarm
rate (FAR) of 10−3; if the dark grey region is added, a FAR of 10−2 is
achieved and if furthermore the light grey region is added, a FAR of 10−1 is
achieved.
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Fig. 6. Receiver Operating Characteristics (ROCs) of 6 different detectors
at a SNR of 3 dB. The curve of the square law detector operating on the
conventional signal, which serves as reference, resides directly on the curve
of the square law detector operating on the 5-fold signal. It can be seen, that
the optimal detector for the M-fold signal clearly outperforms the square law
detector, achieving nearly 10% higher detection rates. The sub-optimal logic
AND combined detector achieves nearly 3% gain in detection rate compared
to the reference, whereas the logic OR combined detector and the detector
based only on phase-variance perform only better than the reference at high
false alarm rates.

by logic OR (38)

• Optimal detector for the M-fold signal based on the
empirically found decision regions illustrated in fig. 5.

In fig. 6, it can be seen that at a SNR of 3 dB, the
optimal detector for the M-fold signal clearly outperforms the
conventional square law detector, achieving nearly 10% higher
DRs. Also, the sub-optimal logic AND combined detector
achieves better performance (about 3% gain in DR) than
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Fig. 7. ROCs of 6 different detectors at a SNR of 6 dB. The curve of
the square law detector operating on the conventional signal, which serves as
reference, resides directly on the curve of the square law detector operating on
the 5-fold signal. The performance gain of the optimal combined detector for
the M-fold signal reaches about 5% compared to the reference, whereas the
logic AND combined detector performs just slightly better than the reference
and the other suboptimal detectors perform clearly inferior except at very high
false alarm rates.
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Fig. 8. ROCs of 6 different detectors at a SNR of 9 dB. The curve of
the square law detector operating on the conventional signal, which serves as
reference, resides directly on the curve of the square law detector operating on
the 5-fold signal. The optimal detector for the M-fold signal achieves a gain of
2-3% in detection rate compared to the reference. The logic AND combined
detector performs slightly worse than the reference. The other suboptimal
detectors perform very poorly as compared to the reference.

the conventional square law detector, whereas the logic OR
combined detector and the detector based only on phase-
variance show performance improvements only at high false
alarm rates (FARs). These findings are generally confirmed
by fig. 7, which shows ROCs of the same detectors at a
SNR of 6 dB. However, the performance gain of the optimal
combined detector for the M-fold signal is reduced compared
to its performance at 3 dB SNR to about 5%. The logic
AND combined detector performs just slightly better than the
reference. At an even higher SNR of 9 dB, at which ROCs

are shown in fig. 8, the performance gain of the optimal
combined detector drops further to about 2-3% compared to
the conventional square law detector, whereas the logic AND
combined detector performs slightly worse than the reference
and the other suboptimal detectors fall clearly off except at
very high FARs (> 10−1). The reduction of performance gain
with rising SNR can be explained by the rising correlation of
the two decision variables amplitude and phase-variance in the
case of a signal being present.

Summarized, the optimal detector for the M-fold signal
achieves a gain in DR compared to the conventional square law
detector of nearly 10% at a SNR of 3 dB. This performance
gain drops to about 5% at a SNR of 6 dB and it drops even
further to about 2-3% at a SNR of 9 dB. This behaiviour can be
explained by the two pdfs p~Ξ,n(

~ξ) and p~Ξ,s(
~ξ). They become

more and more separated in amplitude as the SNR rises. Thus,
at higher SNR less information can be gained by including the
phase variance in the decision process.

Furthermore, the logic AND combined detector achieves
smaller gains in DR than the optimal combined detector but
shows the same behavior as SNR rises. The performance gain
of the logic AND combined detector vanishes at a SNR of
9 dB. The other suboptimal detectors perform clearly inferior
at all observed SNR values except at very high FARs (> 10−1),
thus should only be considered when this is acceptable.

VI. CONCLUSION

The proposed signal modifications allow exploiting phase
information in a (frequency modulated) continuous wave radar
at the detector, while ensuring the same target illumination
energy and time as when using a conventional waveform. It
has been shown how this additional information can be used
to enhance detector performance. The performance gain was
evaluated by simulation for an optimal and three suboptimal
detectors. The optimal detector and one suboptimal detector
outperform the conventional square law detector especially in
the low SNR regime, where a gain of about 10% in detection
rate is achieved by the optimal detector. The performance
gain diminishes as SNR rises, which is due to the increasing
amplitude separation of the two probability densities.

The results are of interest, as it is shown for the first time,
how phase information can be exploited for detection in any
kind of continuous wave radar and that doing so leads to a
performance gain especially at low signal to noise ratios, where
ROC improvements are particularly valuable.
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