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Abstract—Two OFDM radar algorithms (the Maximum Like-
lihood and a MUSIC-based algorithm) are introduced and their
fundamental limits concerning accuracy are explained. To sim-
plify the analysis, we research the special case of only one target
in the radar’s detection range, which facilitates the individual
effects on the estimation quality. Through simulations, we can
show that OFDM radar works well for this case.

I. I NTRODUCTION

OFDM signals have become an interesting choice for radar.
They allow for separate estimation of target distance and
Doppler shift by means of spectral estimation algorithms and
can be used to transmit information at the same time. This
makes OFDM radar useful for mobile networks, e.g. in car-
to-car communication networks, where the additional feature
of a radar system has a huge benefit, and does not even require
additional spectrum usage or radio hardware.

In this paper, we talk about the fundamental limits of
OFDM radar algorithms for the special case when there is
only one target within detection range. This simplification
reduces applicability in real-world scenarios, but provides a
good starting point for more general research and also gives
some first insights into how well an OFDM radar works. We
will introduce the basics of OFDM radar in the following
Section. Section III will explain two OFDM radar algorithms.
Next, some limits for OFDM radar will be given in Section
IV, empirical results are then shown in Section V. Section VI
concludes.

II. OFDM RADAR BASICS

This section outlines the basics of the OFDM radar system.
For a more detailed introduction, we refer to [1]–[3].

The proposed radar system uses OFDM signals to estimate
distance and relative speed of targets. For every measurement,
an OFDM frame is transmitted, consisting ofN sub-carriers
andM OFDM symbols. Thel-th OFDM symbol containsN
modulation symbolsck,l ∈ A, whereA ⊂ C is a modulation
alphabet (e.g. BPSK). The relevant parameters are:

• ∆f : the sub-carrier distance. The frequency of thek-th
sub-carrier is represented byfk = f0 + k∆f .

• TG: the length of the guard interval.
• TO = 1/∆f + TG: the total duration of one OFDM

symbol.

Transmitted OFDM frames are represented as matrices

FTx =








c0,0 · · · c0,M−1

c1,0 · · · c1,M−1

...
. ..

...
cN−1,0 · · · cN−1,M−1








∈ C
N×M . (1)

Every row of the matrix corresponds to the data on one sub-
carrier, whereas every column corresponds to the data on one
OFDM symbol. The data encoded on the individual symbols
ck,l can be received by other participants, thus enabling dual
use of the signal as a communication link.

Synchronously to transmission, a receiver is active which
detects the backscattered signals reflected by other objects.
Their distance and the relative speed cause a round trip
propagation delayτ and a Doppler shiftfD. The received
signal in case ofH separate targets can thus be written as

(FRx)k,l = ck,l

H−1∑

h=0

bhe
j2πlTOfD,he−j2πkτh∆fejϕh+(W)k,l.

(2)
W is the matrix representation of additive white Gaussian
noise (AWGN); its entries are i.i.d. random variables from a
circular, complex, zero-mean normal distribution with variance
σ2. bh is the attenuation of theh-th signal. All phase shifts
which are constant for the entire frame are summarized into
the phase termsϕh. This includes any kind of phase rotation
on the channel and is thus unknown at the receiver.

Before further processing, the transmitted information is
removed fromFRx by element-wise division withFTx. This
results in a radar reception matrix

(F)k,l =
(FRx)k,l
(FTx)k,l

=

H−1∑

h=0

bhe
j(2π(lTOfD,h−kτh∆f))+ϕh + (W′)k,l.

(3)

As explained in [3], the statistics of the noise are not affected
by the division;W′ is thus a noise matrix with the same
statistical properties asW. This becomes obvious for constant-
modulus modulations such as BPSK, where|ck,l| = 1 is
always true.

The estimation ofτ and fD is thus equivalent to the
detection of the fundamental frequency of discretely sampled
complex sinusoids in WGN. Since time-discrete signals are



periodically repeated in the frequency domain, the parameters
can only be unambiguously estimated ifTOfD,h < 1 and
τh∆f < 1 are true. When applying this to the relation between
delay and distance, an unambiguous range for distance can be
given by [1]

dmax =
c0τmax

2
=

c0
2∆f

. (4)

Analogously, the maximum unambiguous range for relative
speed is given by [2]

vmax =
fD,maxc0

2fc
=

c0
2fc · TO

. (5)

c0 is the speed of light,fc the signal’s centre frequency. Unlike
the distance, negative relative velocities are equally likely as
positive ones. The unambiguous velocity range is thus bounded
by |v| < vmax/2.

In order to transform the radar problem into a spectral
estimation problem in this manner, several assumptions are
made:

1) The receive and transmit front-ends are ideal in the sense
that they introduce no non-linear distortions apart from
AWGN. This includes a dynamic range large enough
even if there is direct coupling between transmit and
receive antennas.

2) TG is greater than the round-trip propagation time of the
backscattered signal for the furthermost target.

3) ∆f is at least one order of magnitude larger than the
Doppler shift caused by the object with the highest
relative velocity.

4) The signal’s centre frequency is several orders of mag-
nitude larger than its total bandwidth, so the Doppler
shift is assumed constant over the entire bandwidth.

5) The target speed is small enough to allow for the
assumption that its position is constant during one
measurement.

While assumption 1) is of course an idealisation of what
exists in reality, assumptions 2) through 4) can be fulfilledby
choosing appropriate OFDM parameters, which we discuss in
[4]. They ensure the received signal is not de-orthogonalized
with respect to the transmit signal. The final assumption is an
approximation which will decrease ranging accuracy at high
relative velocities; however, in combination with the other as-
sumptions it ensures orthogonality of the estimation problems
for range and Doppler and thus simplifies the estimators.

A. Signal-to-noise Ratio

The estimation quality is of course mainly determined by
the signal-to-noise ratio (SNR). In the case of one target, we
may normalise (3) such thatb0 = 1, which yields unit power
for the sinusoid and therefore

SNRdB = −10 log10 σ
2. (6)

Its value is influenced by a large number of physical param-
eters, a complete list of which is shown in Table I. These

TABLE I
RELEVANT PARAMETERS FORSNR

PTx Transmit power
G Total transmit and receive antenna gain
fc Centre frequency
B Signal bandwidth

kBT Boltzmann’s constant times receiver noise temperature
NF Total receiver chain noise figure (including digital acquisition)

d Target distance
σRCS Target radar cross section

include the radio system setup as well as the distance and
radar cross section (RCS1) of the target.

While the radio system does not change during operation,
d and σRCS depend on the target. By using the point-scatter
approximation [6, Ch. 2], we know the received power is
determined by

PRx =
PTxGc2σRCS

(4π)3f2
c r

4
. (7)

The receiver induces noise with a total noise power density of
N0 = kBT · NF. Total SNR is thus

SNR=
PRx

N0B
=

PTxGc20
(4π)3f2

cN0B
·
σRCS

r4
. (8)

It must be pointed out that the signal configuration itself is
part of the SNR equation by the relationB = N∆f . This has
effects on the estimator’s variance (see Section IV-B).

III. OFDM RADAR ALGORITHMS

A. Maximum Likelihood Estimation

This algorithm is derived in greater detail in our previous
work [3]. It is based on the fact that the Maximum Likelihood
Estimator (MLE) of a sinusoid’s frequency is the maximum
value of its periodogram (cf. [7], [8] among others). The
estimation algorithm for relative speed and range of the targets
is as follows:

1) Run the FFT of lengthMFFT on every row ofF.
2) On the resulting matrix, calculate the IFFT of length

NFFT on every column.
3) Calculate the modulus-square of every element of the

resulting matrix. The result is the two-dimensional pe-
riodogram

(C)m,n = |IFFT(n) {FFT(m){Fk,l}}|
2
. (9)

4) Every reflecting object corresponds to a peak inC. A
peak at index values(m̂, n̂) corresponds to an object
with estimated distance and relative velocity [3]

d̂ =
n̂c0

2NFFT∆f
, and v̂ =

m̂c0
2fcMFFTTO

. (10)

The indicesm for the Doppler shift go from−MFFT/2 to
MFFT/2 − 1 as the relative velocity can both be positive or
negative, whereas the indicesn are counted from 0 up to
NFFT−1. The computational complexity can further be reduced

1We use the same RCS value for both frequencies for better comparability;
the chosen value is a result of measurements [5]



by defining maximum index valuesmmax and nmax, beyond
which no values are calculated. These maximum values can
be chosen e.g. to match the assumptions 2) and 3). The FFT
and IFFT lengthsMFFT and NFFT can be any integer value
larger than or equal toM and N , respectively. Choosing a
larger value results in zero-padding and therefore can increase
the accuracy of the estimate (see Section IV-C).

It is worth pointing out that the estimation of speed and
distance are orthogonal problems since the values forτ and
fD do not affect each other inF.

B. MUSIC-Based Estimation

An alternative method to estimate frequencies is the MUSIC
algorithm, which is explained in great detail in a multitudeof
publications (e.g. [8], [9]). For the sake of brevity, only the
most important steps are repeated here. Assumeri ∈ C

1×K ,
i = 1 . . . L, to be independent vector representations of
signal containingP complex sinusoids, each with different
frequencyΩi, and AWGN. A maximum likelihood estimate
of the signal’s autocorrelation matrix is [8]

R̂xx =
1

L

L−1∑

i=0

x
H
i xi ∈ C

K×K . (11)

MUSIC estimates frequencies by calculating the eigen-
value decomposition of the autocorrelation matrix estimate,
R̂xx = VΛV

−1. The eigenvectors, which form the columns
of the matrixV, can be divided into a signal subspace and
a noise subspace by assigning the eigenvectors corresponding
to theP largest eigenvalues to the former subspace, and the
other K − P vectors to the latter, which shall be denoted
Vnoise ∈ C

K×(K−P ). Due to the nature of the noise space,
any sinusoid vectors(ejΩ) = (1, ejΩ, ej2Ω, . . . , ej(K−1)Ω))T

with frequencyΩ = Ωi must lie in the null space ofVnoise.
One way to obtain estimates of theΩi is thus to substitute
z = ejΩ and solve for the roots2 of

s
H(z)VnoiseV

H
noises(z) = 0. (12)

In the case of OFDM radar,F contains independent reali-
sations of the relevant sinusoids on the columns caused by the
round trip delay. Analogously, the rows contain realisations
of sinusoids caused by the Doppler shifts. The estimation of
the ranged and the relative velocityv therefore requires two
autocorrelation matrices, denotedRd and Rv, respectively.
From (11), we can see that these matrices can be estimated
by

R̂d =
1

M
FF

H andR̂v =
1

N
F

H
F. (13)

The algorithm for estimating a single target with Root-
MUSIC-based OFDM radar is thus

1) CalculateR̂d andR̂v according to (13).
2) Using the matrixR̂d, calculate the noise subspace and,

accordingly, the root̂zd,1, of (12) closest to the unit
circle. Analogously, calculate the rootẑv,1 usingR̂d.

2Hence the algorithm’s name,Root MUSIC, cf. [8], [10].

3) Calculate the frequency estimatesΩ̂d,k = arg {ẑd,k} and
Ω̂v,k = arg {ẑv,k} from the roots’ angles.

4) These frequencies correspond to the targets’ range and
relative velocity by the relations

d̂ =
Ω̂dc0
4π∆f

andv̂ =
Ω̂vc0

4πfcTO

. (14)

When allowing for valuesP > 1, this algorithm requires
additional steps which may introduce further errors.

IV. ESTIMATION ERRORS

A. Threshold effect

In [3] we show that the estimation is only reliable above
a certain SNR threshold. We will term the region above this
threshold thehigh SNR range. Of course, the estimation is
not error-free even in this range. In order to gauge the error
for distance and speed estimation, we make the assumption
that the actual values for speed and distance are uniformly
distributed within their respective unambiguous ranges.

The method we describe to estimate the precise threshold
is computationally cumbersome and only works for the MLE
case. For that reason, we will rely on simulations to determine
the high SNR range.

B. Lower bounds

To calculate lower bounds for the estimation variance, we
begin with the Craḿer-Rao lower bound (CRB) for line spectra
in one-dimensional processes. Its derivation is found in a
multitude of publications (e.g. [7], [11]).

For a single complex sinusoid with unit amplitude in AWGN
with noise powerσ2 andN discrete samples, the CRB for the
estimate of the frequency assuming unknown phase is

var{ω̂} ≥
6σ2

(N2 − 1)N
. (15)

To transfer this to the case of distance estimation, first
assume we only have one OFDM symbol available. It consists
of N values, and using (14), (15) can directly be converted
into a CRB for the distance estimate:

var{d̂} ≥
6σ2

(N2 − 1)N

(
c0

4π∆f

)2

. (16)

Calculating the CRB for the entire frame is highly complex
due to the fact that the matrixF consists ofM OFDM
symbols, each with a different, random and unknown initial
phase, due to the unknown Doppler shift. We make use of
the fact that the presented estimators have some kind of
implicit averaging to identify a simpler lower bound: We begin
by stating that every OFDM symbol can be used for one
estimationdi, i = 1 . . .M . As we have postulatedwhite noise
as the source of error, thedi representindependent estimates
of d. Probability theory tells us that by averaging, we obtain
an estimatêd with variance

var {d} =
1

M
var {di} . (17)



We can apply this to (16), yielding

var{d̂} ≥
6σ2

(N2 − 1)NM

(
c0

4π∆f

)2

. (18)

We call this bound theaveraged CRB because it is not a true
CRB anymore, but is still a useful lower bound for the analyses
presented here.

In a similar fashion, a lower bound for̂v can be given,

var{v̂} ≥
6σ2

(M2 − 1)MN

(
c0

4πTOfc

)2

. (19)

It is worth pointing out the influence of SNR on the bounds,
since they both share dependencies. By using SNR= 1/σ2

andB = N∆f , we insert (8) into (18) and (19), yielding

var{d̂} ≥
6(4π)N0

PTxG
·

r4

σRCS
·

f2
c

(N2 − 1)M∆f
, (20)

var{v̂} ≥
6(4π)N0

PTxG
︸ ︷︷ ︸

Hardware

·
r4

σRCS
︸ ︷︷ ︸

Target

·
∆f

(M2 − 1)MT 2
O

︸ ︷︷ ︸

Signal parameters

. (21)

Interpreting (20) and (21) gives three insights in particular
into the system design:

• Given the point-scatter approximation,fc only influences
d̂ in a manner that lowering the frequency decreases the
lower bound.

• IncreasingM decreases the lower bound for both esti-
mates, but as this means increasing the signal duration,
it also increases medium access and allows for less
measurements per time unit3.

• When increasing the bandwidth, it is advantageous to
increaseN rather than∆f . This is only possible within
limits given by the channel characteristics, most impor-
tantly the channel’s coherence bandwidth [4].

Finally, it must not be forgotten that the CRB is a suitable
quality metric only forunbiased estimators, and comparing
to the actual estimates only makes sense above the SNR
threshold.

C. Quantization error

In case of the MUSIC-based algorithm, quantization be-
comes a negligible effect if we employ floating-point accuracy
arithmetic.

For the MLE algorithm, this is different: Since the estimates
d̂ andv̂ are strictly quantized, the estimation quality is affected
by a quantization error. From the assumption that the true
distances and velocities are uniformly distributed withintheir
unambiguous ranges, the error variances caused by quantiza-
tion are

var{d̂} ≥
c20

12(2NFFT∆f)2
(22)

and

var{v̂} ≥
c20

12(2fcMFFTTO)2
, (23)

3From a communication viewpoint, it reduces network capacity.

TABLE II
OFDM SIGNAL PARAMETERS

∆f N M fc TG

78.125 kHz 52 256 5.9 GHz 1/4∆f

90.9 kHz 1024 256 24 GHz 1/8∆f

respectively.
From (22) and (23), it is clear that increasingNFFT and

MFFT improves the variance caused by quantization. This is
achieved by zero-paddingF before step 1) in the algorithm
presented in Section III-A. The bias is also affected by this:
For a fixed distance which does not exactly lie within the
grid dictated by the system setup, the estimatealways has a
bias, which decreases when increasing the zero-padding. At
the same time, the variance will decrease until it reaches the
CRB, which leads to a maximum value ofMFFT and NFFT

beyond which increasing the zero-padding has no effect.

V. SIMULATIONS

We used simulations to empirically test the quality of the
estimators. Two signal types were compared: A wideband
OFDM signal in the 24 GHz ISM band, which we have
mentioned in earlier publications (e.g. [3], [12]) and a signal
parametrized very similarly to IEEE 802.11p signals [13],
which are a common choice for car-to-car communications.
These signals are very different in several aspects and so are
good candidates to show the effects on the estimator statistics;
the signal parameters are shown in Table II.

To be able to compare the results between the waveforms,
we fixed all parameters except for the distance. The total noise
figure was set to 20 dB,T was fixed at 290 K and the RCS
to 10 m2. For the simulation, the distance was increased from
10 m to 200 m in steps of 1 m. At every step, 1000 simulations
were run at random velocities, uniformly distributed within
±100 m/s.

The MLE was always set up with a four-fold zero-padding,
i.e. MFFT = 4M andNFFT = 4N .

Fig. 1 shows the average estimator distance bias at every
step, as well as the variance for the distance and speed
estimations. The speed bias was omitted, sincev was chosen
with a zero mean, which is the value an estimator will converge
to when SNR is so low that all it can do is guess the estimate.

We can clearly see the threshold for each signal and estima-
tor. For the threshold, the narrowband signal outperforms the
wideband signal, and MLE outperforms the MUSIC estimator.
The former is easily explained: With the given radio setup,
the narrow-band signal has an SNR advantage since the noise
power density is the same in both cases; also, it uses a lower
centre frequency which yields lower path loss. This is also
reflected in (18). SNR for every given distance is shown in Fig.
1b on a logarithmic scale to highlight the simple dependency
on distance and bandwidth.

The latter effect is in fact a disadvantage of the MUSIC
estimator; the estimation of the autocorrelation matrix requires
a higher SNR than the MLE.
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Fig. 1. The general performance of the MLE (solid lines) and MUSIC (dashed lines) estimators, for wideband (black lines) and narrowband signals (red
lines). The top right image shows the SNR at the receiver at a given distance.

From Fig. 1a, we can see the quantization effect for the ML
estimate on the narrowband signal: since the simulation runs
along a different grid than the estimator, the bias increases
and decreases periodically as it approaches and moves from
the grid centres. This is not the case for the MUSIC estimates,
as they have no quantization effect, and is not visible for the
wideband signal which has a much finer grid.

Also notable is the fact that the MLE error for the nar-
rowband signal is constantly close to zero. This must be
interpreted with the right scrutiny: The quantization gridfor
this signal is fairly coarse, so as long as the threshold is not
reached, the variance will naturally stay very low since the
estimator will always choose the same bin. Besides, a lower
bandwidth is a disadvantage when extending the case to more
than one target.

VI. CONCLUSION

In this paper, we studied some fundamental limits of spectral
estimation based OFDM radar algorithms. In particular, we
identified some bounds for the estimator quality both analyt-
ically and empirically, in the case of a single target. While
of course further research is required to extend these results
to the case of multiple targets, simulations suggest that the
OFDM radar approach is a very promising one. We believe
that this kind of radar system can be added as an upgrade to
systems which already use OFDM for a communications link,
which might be useful for vehicular applications.
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