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Abstract—Two OFDM radar algorithms (the Maximum Like- Transmitted OFDM frames are represented as matrices
lihood and a MUSIC-based algorithm) are introduced and their
fundamental limits concerning accuracy are explained. To sim- €0,0 Co,M~1
plify the analysis, we research the special case of only one target C1,0 s C1,M—1 Nx M
in the radar's detection range, which facilitates the individual Fry = . . . e CcY M. @
effects on the estimation quality. Through simulations, we can : K :
show that OFDM radar works well for this case. CN-1,0 *°° CN-1,M—1

Every row of the matrix corresponds to the data on one sub-
. INTRODUCTION carrier, whereas every column corresponds to the data on one

OFDM signals have become an interesting choice for radg)r!:DM symbol. The data encodeq on the individual symbols
They allow for separate estimation of target distance afi! can be received by other participants, thus enabling dual

Doppler shift by means of spectral estimation algorithmg ar'>¢ of the signal as a communication I|nk.. . . .
can be used to transmit information at the same time. ThisSY"chronously to transmission, a receiver is active which

makes OFDM radar useful for mobile networks, e.g. in ca letects the backscattered signals reflected by other sbject

to-car communication networks, where the additional mMThelr distance and the relative speed cause a round trip

of a radar system has a huge benefit, and does not even recRfippagation delay- and a Doppler shiftfp. The received
additional spectrum usage or radio hardware. signal in case off separate targets can thus be written as

In this paper, we talk about the fundamental limits of H-1 S lTo [ n i3k A
OFDM radar algorithms for the special case when there i§Frx)k1 = k1) bpe? T T0IPne=2TR AT 00 4 (W) .
only one target within detection range. This simplification h=0

U : X 2
redudcef etppllcapmtt); in real-world slcenanos,hbut dme&ch .'W is the matrix representation of additive white Gaussian
good starting point for-more general research and aiso gigsq. (AWGN); its entries are i.i.d. random variables from a
some first insights into how well an OFDM radar works. We. e -

S : : .~ Circular, complex, zero-mean normal distribution withisace
will introduce the basics of OFDM radar in the following

5 . . ; :
. . . . ) o“. by, is the attenuation of thé-th signal. All phase shifts
Section. Section Il will explain two OFDM radar algorlthmswhich are constant for the entire frame are summarized into

V. erpcalrosuls are then shown in Secton v. Secton J]12 PIaSe {ems:.. his includes any kind of phase rotation
co,ncludes ) n the channel and is thu_s unknown at the receiver. _
' Before further processing, the transmitted information is
removed fromFgy by element-wise division witlFr. This

Il. OFDM RADAR BASICS results in a radar reception matrix

This section outlines the basics of the OFDM radar system. (Fra) k1
For a more detailed introduction, we refer to [1]-[3]. F)rt = (Frx)i

The proposed radar system uses OFDM signals to estimate Ho1 ©))
distance and relative speed of targets. For every measateme = Z be? CrTofpn=kmn M) +en 4 (W'Y, ;.
an OFDM frame is transmitted, consisting &f sub-carriers h=0

and M OFDM symbols. The-th OFDM symbol contain$V. ag explained in [3], the statistics of the noise are not aéfédc
modulation symbolsy; € A, whereA C C is a modulation py the division; W’ is thus a noise matrix with the same

alphabet (e.g. BPSK). The relevant parameters are: statistical properties 8. This becomes obvious for constant-
o Af: the sub-carrier distance. The frequency of thth modulus modulations such as BPSK, wheeg,| = 1 is
sub-carrier is represented fy = fo + EAf. always true.
o Tg: the length of the guard interval. The estimation ofr and fp is thus equivalent to the

e To = 1/Af + Tg: the total duration of one OFDM detection of the fundamental frequency of discretely saahpl
symbol. complex sinusoids in WGN. Since time-discrete signals are



- . . TABLE |
periodically repeated in the frequency domain, the pararaet RELEVANT PARAMETERS FORSNR

can only be unambiguously estimatedZp fp, < 1 and _
T, Af < 1 are true. When applying this to the relation between Frx_| Transmit power

. . . G | Total transmit and receive antenna gain
h
delay and distance, an unambiguous range for distance can B —Centre frequency

given by [1] B | Signal bandwidth
A — CoTmax _ Co 4) kpT | Boltzmann's constant times receiver noise temperature
max— o T INE NF | Total receiver chain noise figure (including digital acdfios)

. . . d | Target distance
Analogously, the maximum unambiguous range for relatiV€srcs | Target radar cross section

speed is given by [2]

Umax = b mano __“ (5) include the radio system setup as well as the distance and
2fe 2fe-To radar cross section (R&Sof the target.
co is the speed of lightf. the signal’s centre frequency. Unlike While the radio system does not change during operation,
the distance, negative relative velocities are equallglyikas ¢ and orcs depend on the target. By using the point-scatter
positive ones. The unambiguous velocity range is thus bedinc@Pproximation [6, Ch. 2], we know the received power is

by |v] < Umax/2. determined by )
In order to transform the radar problem into a spectral Pry = Pr«GeZores @)
S . . : (4m)3 f2r4
estimation problem in this manner, several assumptions are ¢
made: The receiver induces noise with a total noise power density o
1) The receive and transmit front-ends are ideal in the ser¥e = k57" - NF. Total SNR is thus
that they |rr]1_tro'dw|:e no non-Ilnear dlStOI’tIO?S apart fron;] SNR — Pry _ PryGc? . OReS. @®)
AWGN. This includes a dynamic range large enoug NoB ~ (47)3f2N,B ~ r*

even if there is direct coupling between transmit and . . . o .
receive antennas. It must be pointed out that the signal configuration itself is

2) Ty is greater than the round-trip propagation time of tHBa't of the SNR equation by the relatigh= N Af. This has
backscattered signal for the furthermost target. effects on the estimator’s variance (see Section 1V-B).

3) Af is at least one order of magnitude larger than the 1. OFDM RADAR ALGORITHMS
Doppler shift caused by the object with the highes/i Maxirmum Likelihood Estimation
relative velocity. i

4) The signal's centre frequency is several orders of mag_This algorithm is derived in greater detail in our previous
nitude larger than its total bandwidth, so the Dopp|é4vork [3]. It is based on the fact that the Maximum Likelihood

shift is assumed constant over the entire bandwidth. EStimator (MLE) of a sinusoid's frequency is the maximum
5) The target speed is small enough to allow for th¥alué of its periodogram (cf. [7], [8] among others). The
assumption that its position is constant during orfeStimation algorithm for relative speed and range of thgetiar

measurement is as follows:

While assumption 1) is of course an idealisation of what 1) Run the FFT 9f lengtWFFT on every row ofF.
exists in reality, assumptions 2) through 4) can be fulfitigd 2) On the resulting matrix, calculate the IFFT of length
choosing appropriate OFDM parameters, which we discuss in Neer On every column.
[4]. They ensure the received signal is not de-orthogoedliz 3) Calcu_late the_modulus-squa_lre of every_elem_ent of the
with respect to the transmit signal. The final assumptiomis a r_esultlng matrix. The result is the two-dimensional pe-
approximation which will decrease ranging accuracy at high riodogram
relative velocities; however, in combination with the otlas- (C)mn = |IFFT(n) {FFT(m){Fi,}}/*. (9)
sumptions it ensures orthogonality of the estimation protd

for range and Doppler and thus simplifies the estimators. ~ 4) Every reflecting object corresponds to a peakinA

peak at index value$mn,n) corresponds to an object

A. Signal-to-noise Ratio with estimated distance and relative velocity [3]
The estimation quality is of course mainly determined by d= "9 ando=-—"% _ (10)
the signal-to-noise ratio (SNR). In the case of one target, w 2NeerAf’ 2fcMerrTo
may normalise (3) such thap = 1, which yields unit power The indicesm for the Doppler shift go from—Mger/2 to
for the sinusoid and therefore Mgrr/2 — 1 as the relative velocity can both be positive or
) negative, whereas the indices are counted from 0 up to
SNRyg = —10log;q 0. (6) Neer—1. The computational complexity can further be reduced

Its value is 'nﬂuenC_Ed by a l‘_arge_ number O_f physical param-iyye yse the same RCS value for both frequencies for better caivifigy,
eters, a complete list of which is shown in Table I. Thesge chosen value is a result of measurements [5]



by defining maximum index valuesimax and nmax, beyond 3) Calculate the frequency estimaﬁé&;C = arg {24} and

which no values are calculated. These maximum values can Q, , = arg {2, } from the roots’ angles.
be chosen e.g. to match the assumptions 2) and 3). The FFB) These frequencies correspond to the targets’ range and

and IFFT lengthsMeer and Negr can be any integer value relative velocity by the relations

larger than or equal td/ and N, respectively. Choosing a R R

larger value results in zero-padding and therefore careass d = Qaco ands = o ) (14)
the accuracy of the estimate (see Section IV-C). ArAf dm fcTo

It is worth pointing out that the estimation of speed angvhen allowing for valuesP > 1, this algorithm requires

distance are orthogonal problems since the values-fand additional steps which may introduce further errors.
fp do not affect each other iR

o V. ESTIMATION ERRORS
B. MUSC-Based Estimation
) . o A. Threshold effect
An alternative method to estimate frequencies is the MUSIC L )
algorithm, which is explained in great detail in a multituafe ' [3] we show that the estimation is only reliable above
publications (e.g. [8], [9]). For the sake of brevity, onlyet a certain SNR threshold. We will term the region above this
most important steps: are repeated here. Assm’clx[{ threshold thehigh SNR range. Of course, the estimation is
i = 1...L, to be independent vector representation’ gpt error-free even in this range. In order to gauge the error
signal containingP complex sinusoids, each with different©r distance and speed estimation, we make the assumption
frequency2;, and AWGN. A maximum likelihood estimate that the actual values for speed and distance are uniformly
of the signall’s autocorrelation matrix is [8] distributed within their respective unambiguous ranges.
The method we describe to estimate the precise threshold

. 1! H XK is computationally cumbersome and only works for the MLE
Ros = i3 Z x;x; €C : (11)  case. For that reason, we will rely on simulations to deteemi
=0 the high SNR range.

MUSIC estimates frequencies by calculating the eigen-
value decomposition of the autocorrelation matrix estématB. Lower bounds

R, = VAV~'. The eigenvectors, which form the columns To calculate lower bounds for the estimation variance, we
of the matrix V, can be divided into a signal subspace angegin with the Crarér-Rao lower bound (CRB) for line spectra
a noise subspace by assigning the eigenvectors corresgone one-dimensional processes. Its derivation is found in a
to the P largest eigenvalues to the former subspace, and thgiltitude of publications (e.g. [7], [11]).

other K — P vectors to the latter, which shall be denoted For a single complex sinusoid with unit amplitude in AWGN
Vioise € CK*X=F). Due to the nature of the noise spaceyith noise powew? and N discrete samples, the CRB for the

any sinusoid vectos(e?) = (1,679,722, . e/ K=DONT  oqiimate of the frequency assuming unknown phase is
with frequency) = 2, must lie in the null space OV gise )
One way to obtain estimates of tg is thus to substitute var{&} > ba ] (15)
z = ¢/2 and solve for the rootsof T (NFP-1)N
s (2)VoisaVIL 5(2) = 0. (12) To transfer this to the case of distance estimation, first

assume we only have one OFDM symbol available. It consists
In the case of OFDM radalE' contains independent reali-of IV values, and using (14), (15) can directly be converted
sations of the relevant sinusoids on the columns causedeby itito a CRB for the distance estimate:
round trip delay. Analogously, the rows contain realigagio 602 2
of sinusoids caused by the Doppler shifts. The estimation of var{d} > — g ( ‘o ) . (16)
the ranged and the relative velocity therefore requires two (N2 =1)N \4mAf
autocorrelation matrices, denotdl; and R,, respectively.  Calculating the CRB for the entire frame is highly complex
From (11), we can see that these matrices can be estimajge to the fact that the matrif consists of M OFDM
by symbols, each with a different, random and unknown initial
R, = LFFH andR, = lFHF. (13) phase, due to the unknown Doppler shift. We make use of
M N the fact that the presented estimators have some kind of
The algorithm for estimating a single target with Rootimplicit averaging to identify a simpler lower bound: We beg
MUSIC-based OFDM radar is thus by stating that every OFDM symbol can be used for one
1) CalculateR, andR, according to (13). estimationd;,i = 1... M. As we have postulatedhite noise
2) Using the matrixR,, calculate the noise subspace ands the source of error, the representndependent estimates
accordingly, the roott,;, of (12) closest to the unit of d. Probability theory tells us that by averaging, we obtain
circle. Analogously, calculate the roét ; usingR,. ~ an estimatel with variance

1
2Hence the algorithm’s nam®&oot MUSIC, cf. [8], [10]. var {d} = M var {d;} . (7)



TABLE I

We can apply this to (16), yielding OFDM SIGNAL PARAMETERS
- 602 Co 2 x
> i N M fe Te
var{d} = (N2 —-1)NM <47rAf> ' (18) 78125 kHz| 52 | 256 | 5.9 GHz | 1/aas
90.9 kHz 1024 | 256 | 24 GHz | 1/sar

We call this bound th@veraged CRB because it is not a true
CRB anymore, but is still a useful lower bound for the anadyse
presented here.

g . , respectively.
In a similar fashion, a lower bound far canQbe given, From (22) and (23), it is clear that increasifger and
var{i} > 602 Co (19) Meer improves the variance caused by quantization. This is
~ (M2 -1)MN \4rTof.) achieved by zero-padding before step 1) in the algorithm

It is worth pointing out the influence of SNR on the bound®resented in Section I1I-A. The bias is also affected by:this
since they both share dependencies. By using SNR/o? For a fixed distance which does not exactly lie within the

and B = NAf, we insert (8) into (18) and (19), yielding grid dictated by the system setup, the estingteays has a
bias, which decreases when increasing the zero-padding. At

4 2
var{d} > 6(4m)No - % fe . (20) the same time, the variance will decrease until it reaches th
PryG ores (N2 —-1)MAf CRB, which leads to a maximum value afrrr and Neer
47) N, 4 A ich i i - i
var{o} > 6(4m)No T f (21) beyond which increasing the zero-padding has no effect.

PG ores  (M? —1)MT3
—— N~
Hardware  Target Signal parameters

Interpreting (20) and (21) gives three insights in parécul
into the system design:

V. SIMULATIONS

We used simulations to empirically test the quality of the
estimators. Two signal types were compared: A wideband

« Given the point-scatter approximatiof), only influences OFDM signal in the 24 GHz ISM band, which we have

d in a manner that lowering the frequency decreases tﬁgntione.d in earlier pu_blications (e.g. [3], [12]) a}nd ansiy
lower bound. parametrized very similarly to IEEE 802.11p signals [13],

« Increasing decreases the lower bound for both estWhiCh are a common choice for car-to-car communications.
mates, but as this means increasing the signal duratigrl?ese signals are very different in several aspects andeso ar
it also, increases medium access and allows for |e%g’od candidates to show the effects on the estimator #tatist
measurements per time thit the signal parameters are shown in Table II.

« When increasing the bandwidth, it is advantageous to 10 be able to compare the results between the waveforms,
increaseN rather thanAf. This is only possible within we fixed all parameters except for the distance. The totalenoi
limits given by the channel characteristics, most impofi9uré was set to 20 dB[" was fixed at 290 K and the RCS
tantly the channel’s coherence bandwidth [4]. to 10 n¥. For the simulation, the distance was increased from

Finally, it must not be forgotten that the CRB is a suitabltlao M 10 200 m in steps of 1 m. At every step, 1000 simulations

quality metric only forunbiased estimators, and comparingwere run at random velocities, uniformly distributed withi

; 0 m/s.
:ﬁrgﬁo%ctual estimates only makes sense above the Sﬁ?he MLE was always set up with a four-fold zero-padding,

i.e. Mgeer = 4M and Negr = 4N.

C. Quantization error Fig. 1 shows the average estimator distance bias at every

In case of the MUSIC-based algorithm, quantization b&tep, as well as the variance for the distance and speed
comes a negligible effect if we employ floating-point acoyra estimations. The speed bias was omitted, sinwgas chosen
arithmetic. with a zero mean, which is the value an estimator will congerg

For the MLE algorithm, this is different: Since the estinsateto when SNR is so low that all it can do is guess the estimate.
d and# are strictly quantized, the estimation quality is affected We can clearly see the threshold for each signal and estima-
by a guantization error. From the assumption that the trigr. For the threshold, the narrowband signal outperformes t
distances and velocities are uniformly distributed witttieir  wideband signal, and MLE outperforms the MUSIC estimator.
unambiguous ranges, the error variances caused by quantidae former is easily explained: With the given radio setup,

tion are the narrow-band signal has an SNR advantage since the noise
. c2 power density is the same in both cases; also, it uses a lower
var{d} > m (22)  centre frequency which yields lower path loss. This is also
FeT reflected in (18). SNR for every given distance is shown in Fig
and 1b on a logarithmic scale to highlight the simple dependency
R 2 X on distance and bandwidth.
var{d} > 22 MerTo) (23)  The latter effect is in fact a disadvantage of the MUSIC

estimator; the estimation of the autocorrelation matrouiees
3From a communication viewpoint, it reduces network capacity. a higher SNR than the MLE.
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Fig. 1. The general performance of the MLE (solid lines) and 31U (dashed lines) estimators, for wideband (black lines) marrowband signals (red

lines). The top right image shows the SNR at the receiver avengilistance.

From Fig. 1a, we can see the quantization effect for the ML
estimate on the narrowband signal: since the simulatios rufy; ¢ swrm, T. zwick, and W. Wiesbeck, “An OFDM System Corcep

along a different grid than the estimator, the bias increase

and decreases periodically as it approaches and moves frizrp

the grid centres. This is not the case for the MUSIC estimate
as they have no quantization effect, and is not visible fer th
wideband signal which has a much finer grid. [

Also notable is the fact that the MLE error for the nar-

3]

rowband signal is constantly close to zero. This must bgy

interpreted with the right scrutiny: The quantization gfit

this signal is fairly coarse, so as long as the threshold ts no
reached, the variance will naturally stay very low since thgs]
estimator will always choose the same bin. Besides, a lower

bandwidth is a disadvantage when extending the case to more

than one target. [6]

VI. CONCLUSION [7]

In this paper, we studied some fundamental limits of spectra
estimation based OFDM radar algorithms. In particular, wés]

identified some bounds for the estimator quality both analyt[
ically and empirically, in the case of a single target. While
of course further research is required to extend thesetsesul

9]

to the case of multiple targets, simulations suggest that O]
OFDM radar approach is a very promising one. We believe

that this kind of radar system can be added as an upgrade to

systems which already use OFDM for a communications lin
which might be useful for vehicular applications.

1]
12]
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