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Motivation
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Neuromorphic Computing
Artificial neural networks (ANN) borrow from biological brains
parallelism and high connectivity among similar computing units
(neurons)...

Osvaldo Simeone Probabilistic Neuromorphic Computing and Communications 4 / 53



Neuromorphic Computing
Neurons in ANNs abstract away the dynamic, sparse, event-driven,
operation of biological neurons...

What can be gained by developing machines that rely on more
accurate neuronal models?

2.1
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Neuromorphic Computing

The question extends to sensing: Can it be useful to mimic more
closely biological sensors such as retinas or cochleas?

[Radhakrishanan et al ’21]
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Neuromorphic Computing

The idea originates in the 90s with the work of Carver Mead
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Machine Learning Today
Computing power required for training of ANN-based models has seen
a 300,000 times increase in 6 years.

[https://openai.com/blog/ai-and-compute/]
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Neuromorphic Computing: Potential Applications

Inference and learning on mobile or embedded devices with limited
energy and memory resources [Welling ’18]
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Neuromorphic Computing and Spiking Neural Networks

Current neuromorphic computing platforms and algorithms implement
Spiking Neural Networks (SNNs).

SNNs replace static neurons with spiking, dynamic, neuronal models.

Spikes enable high-capacity time encoding (“accurate”), low-delay
signalling (”fast”), and low-SNR communications (”far”).

[Gerstner ’14]
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Spiking Neural Networks

[Mehonic and Kenyon ’21]
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Spiking Neural Networks

Orders of magnitude gains in latency and energy have already been
shown when selecting suitable workloads.

[INRC ’21]
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Applications

Application properties necessary for realizing gains on neuromorphic
architectures [INRC ’21]:

I Streaming input data, e.g. audio, video, or any signals changing on
microsecond-to-second time scales

I A need for fast pattern matching, search, and optimization
I A need for adaptation, fine-tuning, or associative learning in

response to arriving information
I A need for low latency responses, e.g. as in closed-loop control

applications (batching and vectorization may be unacceptable)
I Power constrained
I Relatively small problem scales or else cost insensitive due to use

of a compute/memory-integrated architecture, which makes it costly to
scale to large workloads (requiring more processing chips)
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Probabilistic Models and Cognition

Current SNN implementations are deterministic (implementing
frequentist learning).

But probabilistic modelling and Bayesian reasoning are central to
dominant theories of cognition...

which give a central role to the modelling of uncertainty.
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Aleatoric and Epistemic Uncertainty
There are two types of uncertainty

I Aleatoric uncertainty, caused by inherent randomness in the data
generation mechanism

I Epistemic uncertainty, caused by lack of data
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Probabilistic Spiking Neural Network Models

Two complementary frameworks for the design of learning algorithms
for SNNs:

1) Probabilistic spiking neuron models:
I spikes are generated according to a “stochastic threshold” mechanism
I can account for aleatoric uncertainty in data generation processes
I can also be useful to model hardware imperfections at the level of

neurons
I enable the use of principled information-theoretic learning criteria

2) Probabilistic synaptic models:
I synaptic weights are randomly generated before inference
I can account for epistemic uncertainty due to limited availability of data
I can also be useful to model hardware imperfections at the level of

neurons
I enable the application of Bayesian learning
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Models
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Models

An SNN is a network V of spiking neurons.

Its operation is defined by:
I connectivity graph
I neuron model
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Connectivity Graph

Arbitrary directed, possibly cyclic, graph with directed links
representing synaptic connections.

“Parent”, or pre-synaptic, neuron affects causally spiking behavior of
“child”, or post-synaptic, neuron.

Enables recurrent connectivity (directed loops).
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Neuron Models

Several spiking neuron models exists.

They model biological neurons to various degrees of detail:
I Integrate-and-fire (IF)
I Leaky integrate-and-fire (LIF)
I Spike response model (SRM)
I Resonate-and-Fire
I ...

They can be deterministic or probabilistic.
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(Deterministic) Spike Response Model

SRM is a standard deterministic neural model.

Internal state of a neuron i at time t is represented by membrane
potential ui ,t

Output of neuron i at time t:

si ,t = Θ
(
ui ,t − ϑ

)
∈ {0, 1}.

I Θ(·): Heaviside step function
I ui,t : membrane potential of neuron i at time t
I ϑ: a fixed threshold
I A spike si,t = 1 is emitted when the membrane potential ui,t crosses a

fixed threshold ϑ, after which the membrane potential is reset
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(Deterministic) Spike Response Model
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(Probabilistic) SRM with Stochastic Threshold
SRM with stochastic threshold implement probabilistic spiking neuron
models
Neuron i at time t spikes with probability increasing with the
membrane potential ui ,t

si ,t ∼ p(si ,t = 1|ui ,t) = σ(ui ,t − ϑ) =
1

1 + exp
(
− (ui ,t − ϑ)

)
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(Probabilistic) SRM with Stochastic Weights

SRM with stochastic weights model probabilistic synaptic models

They follow the standard SRM, with either deterministic or
probabilistic neurons, with one caveat:

I before the presentation of an input, model parameters are generated
from a distribution q(θ), i.e.,

θ ∼ q(θ)
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Membrane Potential
For all models, we have:

ui ,t =
∑
j∈Pi

wij

(
αt ∗ sj ,t

)
︸ ︷︷ ︸

pre-synaptic

+
(
βt ∗ si ,t

)︸ ︷︷ ︸
post-synaptic

+γi

The contribution of pre-synaptic neurons depends on the synaptic
filter αt with learnable synaptic weights wij .
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pre-synaptic

+
(
βt ∗ si ,t

)︸ ︷︷ ︸
post-synaptic

+γi

The post-synaptic contribution of the neuron depends on the
feedback filter βt .
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Learning for Probabilistic SNNs
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Information-Theoretic Learning

A general form of the learning criterion for (probabilistic) SRM SNNs
with stochastic threshold is given by the Information Bottleneck (IB)
problem maxθ LIB(θ), with

LIB(θ) = MI (target; repr|θ)− β ·MI (input; repr|θ)

I aims at learning a representation, defined by the output of spiking
neurons, that is maximally informative about target signals,

I while being maximally compressive about input sources
I If β = 0, supervised learning (maximum likelihood, ML)
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Information-Theoretic Learning
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One can also mix SNNs and ANNs
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Information-Theoretic Learning

Gradient-based optimization yields local learning rules with global
feedback (no backprop):

θj ,i ← θj ,i − η ·
((

error
)
·(

post-synaptic errori
)
·
(
pre-synaptic tracej

))
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Application 1

Neuromorphic dataset obtained by filming moving MNIST digits
displayed on a screen with a neuromorphic camera.

[Serrano-Gotarredona and Linares-Barranco, 2015]
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Application 1

DECOLLE: surrogate gradient method with local pseudo-targets
[Kaiser et al. ’21].

I convolutional or layered architectures

SRM with stochastic threshold
I fully connected architecture

Rate decoding

SNNs are equipped with N = NH + NV neurons, where the number
NV of output neurons is equal to the number of classes.
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Application 1

Model Period NH Input Acc.

1 ms 39,232 Per-sign 99.4%
1 ms 19,616 Binary 98.9%

DECOLLE 1 ms 512 Per-sign 86.8%
10 ms 256 Per-sign 73.8%
25 ms 256 Per-sign 65.8%

25 ms 512 Per-sign 83.50%
GLM-SNN 25 ms 512 Binary 80.80%

25 ms 256 Per-sign 82.80%
25 ms 256 Binary 79.3%

SRM with stochastic threshold, also known as generalized linear
model (GLM), are more robust to coarser sampling rates smaller
topologies.

Probabilistic models are better suited to capture aleatoric uncertainty.
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Application 2: Remote Sensing and Inference
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Conventional Solution

Digital sensing, computing, and communications:
I High energy consumption for always-on operation
I Latency caused by frame-based transmission
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Neuromorphic Joint Source-Channel Coding (NeuroJSCC)

NeuroJSCC replaces:
I digital sensing with neuromorphic sensing
I digital processors with neuromorphic processors
I digital communications with impulse radio

Low energy consumption and low latency.
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Neuromorphic Joint Source-Channel Coding (NeuroJSCC)
Impulse radio communicates with baseband pulses of very short
duration.
Candidate for beyond-5G systems in the Terahertz range
Used for extremely low-power transmission in the IEEE 802.15.4z
standard

[Yu et al ’15]
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Neuromorphic Joint Source-Channel Coding (NeuroJSCC)

Recently, the idea is being investigated in the industry too...
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Encoding and Decoding SNNs

internal neurons ℋ𝐸 output neurons 𝒳

output neurons 𝒱 internal neurons ℋ𝐷
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Results

AWGN transmission on parallel channels

Benchmarks:
I Uncoded transmission: On-Off Shift Keying + hard demodulation +

SNN classifier trained on noisy signals (i.e., remove encoding SNN)
I Frame-based separate source-channel coding (SSCC): State of the art

VQ-VAE [Van den Oord, 2017] with compression rate 2 + LDPC
encoding (rate 1/2) + hard demodulation + LDPC decoding +
VQ-VAE decompression + ANN/ SNN classifier.

Osvaldo Simeone Probabilistic Neuromorphic Computing and Communications 41 / 53



Results
SNR = −8 dB (average per-symbol signal power over noise)

NeuroJSCC and Uncoded have zero latency, while SSCC has to form
and process frames.

NeuroJSCC exhibits a graceful trade-off between the number of
processed samples and the classification performance.
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Results
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NeuroJSCC maintains a test accuracy of 80%, even at an SNR level
as low as −8 dB.
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Bayesian Learning for SNNs
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Bayesian Learning for SNNs

SRM with stochastic threshold introduces randomness in the spiking
mechanism...

... which allows to better capture aleatoric uncertainty.

Bayesian models introduce randomness at the level of weights...

which captures epistemic uncertainty due to limited data...

and enables the combination of models specialized to different parts
of the problem space.
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Bayesian Learning for SNNs

Bayesian learning optimizes a distribution q(θ) over the SNN weights.

During inference, weights are randomly sampled from q(θ), and the
final prediction may be averaged over multiple models.
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Bayesian Learning for SNNs

During training, accounting for “error bars” in the model parameter
space can improve accuracy by guiding the update process.

[Aitchinson, 2021]
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Bayesian Learning for SNNs

The problem amounts to minimizing the free energy: minq(θ)F(θ),
with

F(θ) := Eq(θ)

[
log-loss of the SNN (θ)

]
︸ ︷︷ ︸

fitting the training data

+ρ · KL
[
q(θ)||prior(θ)

]
︸ ︷︷ ︸

regularizing penalty

I The KL term accounts for epistemic uncertainty due to the presence of
limited data

I ρ: temperature parameter
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Bayesian Learning for SNNs

Optimization via stochastic natural gradient descent results in an
update that follows again a three-factor rule:

θr
j ,i ← (1− ηρ) · θr

j ,i − η ·
((

errorj ,i
)
·(

post-synaptic sensitivityi
)
·
(
pre-synaptic tracej

)
− ρ · θr

0

)

Unlike the frequentist rules seen above, the error term is specific to
each synapse and it grows with the uncertainty concerning the
corresponding weights (natural gradient).
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Bayesian Learning for SNNs

Bayesian learning captures epistemic uncertainty, while maintaining
competitive performance as compared to SNNs with full-precision
weights.
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Conclusions

Neuromorphic computing aims at harnessing the efficiency of
biological brains by using a more realistic abstraction for the neurons
via SNNs.

Potential energy and latency gains when implemented on specialized
hardware

Training for deterministic and probabilistic SNN models can be done
via different, but related, three factor training rules (offline or
on-chip).

Applications of neuromorphic computing to communication systems
may be found for battery-powered remote inference and learning
applications.
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Conclusions

[Mehonic and Kenyon ’21]
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