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Motivation
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Neuromorphic Computing
o Artificial neural networks (ANN) borrow from biological brains
parallelism and high connectivity among similar computing units
(neurons)...
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Neuromorphic Computing

@ Neurons in ANNs abstract away the dynamic, sparse, event-driven,
operation of biological neurons...
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Neuromorphic Computing

@ Neurons in ANNs abstract away the dynamic, sparse, event-driven,
operation of biological neurons...

@ What can be gained by developing machines that rely on more
accurate neuronal models?
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Neuromorphic Computing

@ The question extends to sensing: Can it be useful to mimic more
closely biological sensors such as retinas or cochleas?
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Neuromorphic Computing

@ The idea originates in the 90s with the work of Carver Mead
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Exploring the gemetic heritage of racehorses.
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Machine Learning Today

@ Computing power required for training of ANN-based models has seen
a 300,000 times increase in 6 years.

Two Distinct Eras of Compute Usage in Training AT Systems
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[https://openai.com/blog/ai-and-compute/]
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Neuromorphic Computing: Potential Applications

@ Inference and learning on mobile or embedded devices with limited
energy and memory resources [Welling '18]

mobile personal assistants medical and health wearables

IoT mobile or embedded devices neural prosthetics
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Neuromorphic Computing and Spiking Neural Networks

@ Current neuromorphic computing platforms and algorithms implement
Spiking Neural Networks (SNNs).

@ SNNs replace static neurons with spiking, dynamic, neuronal models.
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Neuromorphic Computing and Spiking Neural Networks
@ Current neuromorphic computing platforms and algorithms implement
Spiking Neural Networks (SNNs).
@ SNNs replace static neurons with spiking, dynamic, neuronal models.

@ Spikes enable high-capacity time encoding (“accurate”), low-delay
signalling ("fast”), and low-SNR communications (" far").

MARK HUMPHRIES

THE SPIKE

AN UERT Rt UIRNIEY
THROUGH THE BRAIN
LTINS 2R 1 SIE CIOINIDIS

[Gerstner '14]
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Spiking Neural Networks

NEUROMORPHIC CHIPS

Modelling of Cognitive
biological systems applications
T PROPERTIES:
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Spiking Neural Networks

@ Orders of magnitude gains in latency and energy have already been
shown when selecting suitable workloads.
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Applications

@ Application properties necessary for realizing gains on neuromorphic
architectures [INRC "21]:

» Streaming input data, e.g. audio, video, or any signals changing on
microsecond-to-second time scales
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Applications

@ Application properties necessary for realizing gains on neuromorphic
architectures [INRC "21]:

» Streaming input data, e.g. audio, video, or any signals changing on
microsecond-to-second time scales

> A need for fast pattern matching, search, and optimization

» A need for adaptation, fine-tuning, or associative learning in
response to arriving information

> A need for low latency responses, e.g. as in closed-loop control
applications (batching and vectorization may be unacceptable)

» Power constrained

» Relatively small problem scales or else cost insensitive due to use
of a compute/memory-integrated architecture, which makes it costly to
scale to large workloads (requiring more processing chips)
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Probabilistic Models and Cognition

@ Current SNN implementations are deterministic (implementing
frequentist learning).

@ But probabilistic modelling and Bayesian reasoning are central to
dominant theories of cognition...

W —— g PROBABILISTIC MODELS

The Bayesian brain: the role of OF THE BRAIN
uncertainty in neural coding and Perceptio
Bayesian Brain computation

PROBABILISTIC APPROACHES 10
NEURAL CODING

David G, Knill and Alexandro Pouget
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Probabilistic Models and Cognition

@ Current SNN implementations are deterministic (implementing
frequentist learning).

@ But probabilistic modelling and Bayesian reasoning are central to
dominant theories of cognition...

@ which give a central role to the modelling of uncertainty.

B — g PROBABILISTIC MODELS

The Bayesian brain: the role of OF THE BRAIN
uncertainty in neural coding and Perceptio
Bayesian Brain computation

PROBABILISTIC APPROACHES 10
NEURAL CODING David G, Knill and Alexandro Pouget
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Aleatoric and Epistemic Uncertainty

@ There are two types of uncertainty
» Aleatoric uncertainty, caused by inherent randomness in the data
generation mechanism
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Aleatoric and Epistemic Uncertainty

@ There are two types of uncertainty
» Aleatoric uncertainty, caused by inherent randomness in the data
generation mechanism
» Epistemic uncertainty, caused by lack of data
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Probabilistic Spiking Neural Network Models

@ Two complementary frameworks for the design of learning algorithms
for SNNs:
1) Probabilistic spiking neuron models:
> spikes are generated according to a “stochastic threshold” mechanism
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Probabilistic Spiking Neural Network Models

@ Two complementary frameworks for the design of learning algorithms
for SNNs:

1) Probabilistic spiking neuron models:

> spikes are generated according to a “stochastic threshold” mechanism

» can account for aleatoric uncertainty in data generation processes

» can also be useful to model hardware imperfections at the level of
neurons

> enable the use of principled information-theoretic learning criteria

2) Probabilistic synaptic models:

> synaptic weights are randomly generated before inference

» can account for epistemic uncertainty due to limited availability of data

» can also be useful to model hardware imperfections at the level of
neurons

> enable the application of Bayesian learning
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Models

@ An SNN is a network V of spiking neurons.
@ lts operation is defined by:

> connectivity graph
» neuron model
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Connectivity Graph

o Arbitrary directed, possibly cyclic, graph with directed links
representing synaptic connections.

“Parent”, or pre-synaptic, neuron affects causally spiking behavior of
“child”, or post-synaptic, neuron.
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Connectivity Graph

o Arbitrary directed, possibly cyclic, graph with directed links
representing synaptic connections.

@ “Parent”, or pre-synaptic, neuron affects causally spiking behavior of
“child”, or post-synaptic, neuron.

@ Enables recurrent connectivity (directed loops).
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Neuron Models

@ Several spiking neuron models exists.

@ They model biological neurons to various degrees of detail:
> Integrate-and-fire (IF)

Leaky integrate-and-fire (LIF)

Spike response model (SRM)

| 3
>
» Resonate-and-Fire
>

@ They can be deterministic or probabilistic.
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(Deterministic) Spike Response Model

@ SRM is a standard deterministic neural model.

@ Internal state of a neuron i at time t is represented by membrane
potential u; ;

@ Output of neuron i at time t:

S,'7t = @(U,‘,t — ’19) S {0, 1}
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(Deterministic) Spike Response Model

@ SRM is a standard deterministic neural model.

@ Internal state of a neuron i at time t is represented by membrane
potential u; ;

@ Output of neuron i at time t:

S,'7t = @(U,‘,t — 19) S {0, 1}

O(+): Heaviside step function

u; ¢+ membrane potential of neuron i at time t

. a fixed threshold

A spike s;; = 1 is emitted when the membrane potential u;; crosses a
fixed threshold 9, after which the membrane potential is reset

vV vyVvVvyy

Osvaldo Simeone Probabilistic Neuromorphic Computing and Communications 22 /53



(Deterministic) Spike Response Model

spikes times
—— threshold

membrane potential

0 20 40 60 80 100
time
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(Probabilistic) SRM with Stochastic Threshold

@ SRM with stochastic threshold implement probabilistic spiking neuron
models
@ Neuron j at time t spikes with probability increasing with the

membrane potential u; ¢
1

- 1—|—exp(— (uj —19))

sit ~ p(sie = i) = o(uie — V)

=== spikes times

—— threshold

membrane potential

0 20 10 60 80 100
time.
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(Probabilistic) SRM with Stochastic Weights

@ SRM with stochastic weights model probabilistic synaptic models

@ They follow the standard SRM, with either deterministic or
probabilistic neurons, with one caveat:

» before the presentation of an input, model parameters are generated
from a distribution g(6), i.e.,

0~ q(0)
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Membrane Potential
@ For all models, we have:

Uit = Z wij (Oét * S‘j’t) + (51— * Si’t) +’Yl

JEPi post-synaptic

~~

pre-synaptic

@ The contribution of pre-synaptic neurons depends on the synaptic
filter a; with learnable synaptic weights w;;.

pre-synaptic P;

d . o

post-synaptic i
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Membrane Potential

Uj = Z Wij (at * 5j,t) + (,Bt * Si,t) +7i

J\EP'. _  post-synaptic

~~

pre-synaptic

@ The post-synaptic contribution of the neuron depends on the
feedback filter ;.

pre-synaptic P;

post-synaptic i
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Learning for Probabilistic SNNs
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Information-Theoretic Learning

@ A general form of the learning criterion for (probabilistic) SRM SNNs
with stochastic threshold is given by the Information Bottleneck (IB)
problem maxy £g(6), with

Lig(0) = Ml(target; repr|f) — 8 - MI(input; repr|6)

input
sources

encoding
SNN (8)

internal target
representation signals

» aims at learning a representation, defined by the output of spiking
neurons, that is maximally informative about target signals,

» while being maximally compressive about input sources
» If 3 =0, supervised learning (maximum likelihood, ML)
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Information-Theoretic Learning

—0.78
—-0.02 -
—0.99 ~

—0.33

@ One can also mix SNNs and ANNs
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Information-Theoretic Learning

o Gradient-based optimization yields local learning rules with global
feedback (no backprop):

0;i<0;i—n- <(error)-

(post-synaptic error;) - (pre-synaptic tracej))
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Application 1

@ Neuromorphic dataset obtained by filming moving MNIST digits
displayed on a screen with a neuromorphic camera.

[Serrano-Gotarredona and Linares-Barranco, 2015]
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Application 1

@ DECOLLE: surrogate gradient method with local pseudo-targets
[Kaiser et al. "21].

» convolutional or layered architectures
@ SRM with stochastic threshold
» fully connected architecture

@ Rate decoding

@ SNNs are equipped with N = Ny + Ny neurons, where the number
Ny, of output neurons is equal to the number of classes.
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Application 1

MODEL PERIOD Ny INPUT Acc.
1 MS 39,232 PER-SIGN  99.4%
1 Ms 19,616  BINARY 98.9%
DECOLLE 1 MS 512 PER-SIGN 86.8%
10 Ms 256 PER-SIGN  73.8%
25 MS 256 PER-SIGN  65.8%
25 MS 512 PER-SIGN  83.50%
GLM-SNN 25 MS 512 BINARY  80.80%
25 MS 256 PER-SIGN  82.80%
25 MS 256 BINARY 79.3%

@ SRM with stochastic threshold, also known as generalized linear
model (GLM), are more robust to coarser sampling rates smaller

topologies.

@ Probabilistic models are better suited to capture aleatoric uncertainty.

Osvaldo Simeone
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Application 2: Remote Sensing and Inference
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Conventional Solution

| my o

| A/D |4—>| sensor | | actuator H D/A |
WL Ly
- 1
1 T
UL UL UL
local PN RF RF ™ oslcoilclslor
i . .
oscillator trans‘mltter rece:ver
NAVAAVIA
PLL

o Digital sensing, computing, and communications:

» High energy consumption for always-on operation
» Latency caused by frame-based transmission
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Neuromorphic Joint Source-Channel Coding (NeuroJSCC)

@ NeuroJSCC replaces:

» digital sensing with neuromorphic sensing
» digital processors with neuromorphic processors
» digital communications with impulse radio

@ Low energy consumption and low latency.

) probabilistic output
data-driven output |

___internal neurons Hy output neurons V-

L
| |'||I —— A —
. /\I, -w—uJ\r
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I
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Neuromorphic Joint Source-Channel Coding (NeuroJSCC)

@ Impulse radio communicates with baseband pulses of very short
duration.

o Candidate for beyond-5G systems in the Terahertz range

@ Used for extremely low-power transmission in the IEEE 802.15.4z
standard

Sampling
pulsed laser

| | time
I I time
I l time

[Yu et al "15]

Time multiplexed optical pulse train

THz pulses

A=) L (e

THz receiver
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Neuromorphic Joint Source-Channel Coding (NeuroJSCC)

@ Recently, the idea is being investigated in the industry too...

Wireless Distributed Neuromorphic Computing =
» Wireless connectivity / Co:(rol
algorithm \
» Neuromorphic devices ‘ l‘ N
Vision o o Motion o s
analysis ® E control ® e
» End-to-end spiking =
communication e:m
L Sf’o
Camera Robotic
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Encoding and Decoding SNNs

exogenous inputs to encoder

7 JP—

inference output
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internal neurons Hy output neurons X'
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Results

@ AWGN transmission on parallel channels

o Benchmarks:

» Uncoded transmission: On-Off Shift Keying + hard demodulation +
SNN classifier trained on noisy signals (i.e., remove encoding SNN)

» Frame-based separate source-channel coding (SSCC): State of the art
VQ-VAE [Van den Oord, 2017] with compression rate 2 + LDPC
encoding (rate 1/2) + hard demodulation + LDPC decoding +
VQ-VAE decompression + ANN/ SNN classifier.
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Results

e SNR = —8 dB (average per-symbol signal power over noise)

0.85

0.80

NeuroJSCC, r =1

NeuroJSCC, r = 3/4
SSCC + ANN, FF =4
SSCC + SNN, F =4
Uncoded
Y v
20 10 G0 80 100

time steps (latency)

(=Jbe(+)

@ NeuroJSCC and Uncoded have zero latency, while SSCC has to form

and process frames.

@ NeuroJSCC exhibits a graceful trade-off between the number of
processed samples and the classification performance.

Osvaldo Simeone
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Results

Uncoded
NeuroJSCC,

trained at SXR-(MB

0.9

o
»

e
=

test accuracy

0.6

NeuroJSCC, trained at SNR=0dB
-8 -7 —6 -5 —4 -3 -2 -1
SNR [dB]

@ NeuroJSCC maintains a test accuracy of 80%, even at an SNR level
as low as —8 dB.
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Bayesian Learning for SNNs
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Bayesian Learning for SNNs

@ SRM with stochastic threshold introduces randomness in the spiking
mechanism...

@ ... which allows to better capture aleatoric uncertainty.
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Bayesian Learning for SNNs

@ SRM with stochastic threshold introduces randomness in the spiking
mechanism...

. which allows to better capture aleatoric uncertainty.
Bayesian models introduce randomness at the level of weights...

which captures epistemic uncertainty due to limited data...

and enables the combination of models specialized to different parts
of the problem space.
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Bayesian Learning for SNNs

@ Bayesian learning optimizes a distribution g(6) over the SNN weights.

@ During inference, weights are randomly sampled from g(6), and the
final prediction may be averaged over multiple models.

“Brilliant. ... Exhilarating.”
—RICHARD DAWKINS, from the Foreword

A
THOUSAND
BRAINS

AR !JL
[[)‘%J
A NEW THEORY OF
INTELLIGENCE

JEFF HAWKINS

Osvaldo Simeone Probabilistic Neuromorphic Computing and Communications



Bayesian Learning for SNNs

@ During training, accounting for “error bars” in the model parameter
space can improve accuracy by guiding the update process.

[Aitchinson, 2021]

Osvaldo Simeone
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Bayesian Learning for SNNs

@ The problem amounts to minimizing the free energy: mingg) F(0),
with

F(0) = Eqp) [Iog—loss of the SNN (0)] +p- KL[q(e)Hprior(a)

/

~~

fitting the training data regularizing penalty

» The KL term accounts for epistemic uncertainty due to the presence of
limited data
> p. temperature parameter
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Bayesian Learning for SNNs

@ Optimization via stochastic natural gradient descent results in an
update that follows again a three-factor rule:

9;-,,- — (1 —np)- 0}7; —-n- <(errorj,,-)-

(post-synaptic sensitivity;) - (pre-synaptic trace;) — p - 96)
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Bayesian Learning for SNNs

@ Optimization via stochastic natural gradient descent results in an
update that follows again a three-factor rule:

9;-,,- — (1 —=mnp)- 0}7; —-n- <(errorj,,-)-

(post-synaptic sensitivity;) - (pre-synaptic trace;) — p - 96)

@ Unlike the frequentist rules seen above, the error term is specific to
each synapse and it grows with the uncertainty concerning the
corresponding weights (natural gradient).
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Bayesian Learning for SNNs

@ Bayesian learning captures epistemic uncertainty, while maintaining
competitive performance as compared to SNNs with full-precision
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Conclusions

@ Neuromorphic computing aims at harnessing the efficiency of
biological brains by using a more realistic abstraction for the neurons
via SNNs.

@ Potential energy and latency gains when implemented on specialized
hardware

@ Training for deterministic and probabilistic SNN models can be done
via different, but related, three factor training rules (offline or
on-chip).

@ Applications of neuromorphic computing to communication systems
may be found for battery-powered remote inference and learning
applications.
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Conclusions
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