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Abstract— Extending the derivation of a maximum likelihood
spectrum estimator by Stoica and Sundin, non-parametric spec-
trum estimation with linear precompression is introduced. For
real-time applications, linear precompression allows for a scalable
trade-off between data rate and accuracy of the estimate. Precom-
pression is based on linear projection with a compression matrix
formed from sequences with perfect periodic autocorrelation.
This basis has the property of preserving the power spectrum.
The derived estimator is verified with numerical simulations.

I. INTRODUCTION

Traditionally, digital spectrum estimation is based on

equidistant sampling of a time-continuous signal above the

Nyquist frequency. In certain applications such as broad-

band real-time spectrum estimation for spectrum analyzers

or cognitive radios [1] sampling frequency or computational

resources are limited, but one would still like to estimate the

frequency content of the signal in a very wide frequency band.

Random subsampling is one approach to solve this problem,

but spectrum reconstruction uses iterative algorithms, which

are computationally involved - see e.g. [2], [3]. A major

advantage of these algorithms is that they deal with missing

data, which can occur in numerous applications. However, if

the focus lies on data reduction by deliberately discarding data

prior to analysis, linear precompression with a circulant matrix

is an efficient alternative to reduce the sampling rate1 at the

expense of estimator variance. Linear precompression in itself

is simple and well-known, but, to the best of the authors’

knowledge, its application to spectrum estimation has not yet

been reported in literature.

The paper is structured as follows. In Section II non-

parametric spectrum estimation with linear precompression is

introduced as a modified approximate maximum likelihood

estimate, restating and elaborating on results from Stoica and

Sundin [5]. Section III briefly describes perfect sequences

and gives a simple construction for compression matrices.

Two families of sequences, ternary and polyphase sequences,

are compared with respect to suitability for precompression.

Simulation results are presented in Section IV. Section V

concludes.

II. LINEARLY PRECOMPRESSED NON-PARAMETRIC

SPECTRUM ESTIMATION

In contrast to parametric approaches, a non-parametric spec-

trum estimator assumes no prior knowledge of the underlying

1This approach bears similarities with the recently established research field
Compressed Sensing [4]. In contrast, the focus here does not lie on detection
or reconstruction of the original signal, but on spectrum estimation.

model structure and estimates the power spectral density (PSD)

function directly. In [5], Stoica and Sundin derive a non-

parametric spectrum estimator based on a small set of assump-

tions. This derivation2 is extended to linear precompression.

A. Maximum Likelihood Estimation

Let y(t)|t=T,2T,... denote a complex-valued stationary band-

limited random process with equidistant time instances, and

let Φ(ω) denote its frequency-continuous PSD function. The

random observation vector y ∈ CN with N observations

is y = (y(1), ..., y(N))T . The PSD maximum likelihood

estimator is derived under the following assumptions:

1) The data vector y has a circular Gaussian distribution

with zero mean and covariance matrix R.

2) The PSD function Φ(ω) is piecewise constant on M
equidistant intervals φk and strictly positive.

3) M is a divisor of N : for any given M , there is an integer

L such that LM = N .

4) The data vector y of dimension N is precompressed into

the compressed data vector ỹ of dimension C via the

projection matrix A ∈ CC×N : ỹ = Ay.

5) The precompression matrix A is row-orthogonal, i.e.,

AA∗ = I holds.

6) A is also approximately column-orthogonal, i.e.,

A∗A ≈ I holds.

Assumptions 1), 2) and 3) are taken directly from [5]; 4) and

5) specify linear precompression. Assumptions 5) and 6) allow

for the approximation

(AXA∗)−1 ≈ AX−1A∗, (1)

where X is any invertible (N × N)-matrix. (1) will be used

as an identity in the following; it is approximately fulfilled for

the precompression matrices constructed in Section III3.

Gaussian statistics and stationarity are preserved under the

linear transform A. Let the covariance matrix after transforma-

tion be denoted by R̃. The relationship between the covariance

matrices R and R̃ can be expressed as

R̃ = E{ỹỹ∗} = E{(Ay)(Ay)∗} = ARA∗ . (2)

2In their paper, Stoica and Sundin derive popular spectrum estimators, e.g.,
the Thomson multitaper method, from a maximum likelihood viewpoint. The
extension to linear precompression is straightforward, so some steps of the
derivation are omitted here for brevity.

3An error bound depending on A is subject to research.



The log-likelihood function of the data vector ỹ has to be

maximized, which is equivalent to minimizing

f = log
∣
∣
∣R̃

∣
∣
∣ + ỹ∗R̃−1ỹ

= log |ARA∗| + ỹ∗(ARA∗)−1ỹ

(1)
= log |ARA∗| + ỹ∗AR−1A∗ỹ .

(3)

The relationship between R and Φ(ω) can be expressed as

[5]

R = E{yy∗} =
1

2π

∫ 2π

0

a(ω)a(ω)∗Φ(ω) dω (4)

with a(ω) = (ejω , ..., ejNω)T . Using assumption 2) and β =
1/M , this can be rewritten as

R =

M∑

k=1

φk
1

2π

∫ 2πkβ

2π(k−1)β

a(ω)a(ω)
∗
dω

=
M∑

k=1

φkDkΓDk
∗

(5)

with

Γ =
1

2π

∫ πβ

−πβ

a(ω)a(ω)
∗
dω (6)

and

Dk = diag(ej2πβ(k−1/2), · · · , ejN2πβ(k−1/2)) (7)

where D = diag(x) with x ∈ C
N , x = (x1, x2, ..., xN )T

denotes a diagonal matrix with entries Dii = xi.

Minimizing the objective function (3) yields the maximum

likelihood estimator under the given assumptions. To make

estimation computationally tractable, two approximations will

be introduced in the following.

Γ can be well approximated by eigenvectors associated with

the first L largest eigenvalues (which are approximately of

equal magnitude) [5] and hence be written as

Γ ≈ UU∗ (8)

for an appropriately chosen matrix U ∈ CN×L. With this

approximation and (3), (5) can be rewritten as a matrix

multiplication:

R =

M∑

k=1

φkDkUU∗Dk
∗

= WΦW∗

(9)

with

Φ = diag(φ1, ..., φ1
︸ ︷︷ ︸

L times

, ..., φM , ..., φM
︸ ︷︷ ︸

L times

) (10)

and the block matrix

W = (D1U · · ·DMU) . (11)

Note that approximately [5]

WW∗ = I . (12)

Using (9) the objective function (3) is modified to

f = log |A(WΦW∗)A∗| + ỹ∗A(WΦW∗)−1A∗ỹ

= log |(AW)Φ(AW)∗| + ((AW)∗ỹ)∗Φ−1(AW)∗ỹ .
(13)

To minimize, (13) is differentiated with respect to φk. Using

the identity d
dφk

log |X(φk)| = tr(X−1 d
dφk

X):

0 = tr(((AW)Φ(AW)∗)−1(AW)Ik(AW)∗)+

−1

φ2
k

(W∗A∗ỹ)∗Ik(W∗A∗ỹ).
(14)

with

Ik = diag( 0, 0, ..., 0
︸ ︷︷ ︸

(k−1)L times

, 1, 1, ..., 1
︸ ︷︷ ︸

L times

, 0, 0, ..., 0
︸ ︷︷ ︸

(M−k)Ltimes

). (15)

Solving (14) for φk is achieved by applying (1),

which transforms the inverse part of the trace into

((AW)Φ(AW)∗))−1 = (AW)Φ−1(AW)∗ and applying as-

sumption 2) and (12). The compressed ML estimator is thus

φ̂k =
1

Lk
(W∗A∗ỹ)∗Ik(W∗A∗ỹ) (16)

where

Lk = tr((AW)Ik(AW)∗). (17)

The values of Lk are constant and can be calculated a-priori.

For the uncompressed case C = N , this reduces to the

result of Stoica and Sundin [5], since then Lk = L for all k:

φ̂k =
1

L
(W∗y)∗Ik(W∗y) . (18)

B. Cramér-Rao Bound

Since the introduction of the compression matrix will likely

lead to an increased estimation variance, the calculation of the

Cramér-Rao bound (CRB) in [5] shall also be generalized for

the compressed case. From the Slepian-Bangs formula [5], the

inverse of the (M×M) CRB matrix Pcr is given element-wise

by

P−1

cr i,j = tr(R̃−1(
∂

∂φi
R̃)R̃−1(

∂

∂φj
R̃)) . (19)

Using (1), (2), (9) and (12),

R̃−1 = AWΦ−1(AW)∗ (20)

and

∂

∂φk
R̃ =

∂

∂φk
ARA∗ = AWIkW

∗A∗. (21)

From approximation (12) and assumption 5) follows

AW(AW)∗ = I, which simplifies (19) after inserting (20)

and (21) to

P−1

cr i,j = tr((AW)Φ−2Ii(AW)∗) δij . (22)



The CRB for each of the estimations φ̂k is thus

CRB(φ̂k) =
φ2

k

Lk
. (23)

As above, for the uncompressed case C = N , Lk = L
and (23) reduces to the result of Stoica and Sundin [5]. Since

in general Lk < L for the compressed case, the minimum

possible estimator variance increases.

III. CONSTRUCTION OF COMPRESSION MATRICES FROM

SEQUENCES WITH PERFECT PERIODIC AUTOCORRELATION

For linear precompression assumptions 5) and 6) need to

be fulfilled. This is the case for compression matrices formed

from sequences with perfect periodic autocorrelation.

A. Sequences with perfect periodic autocorrelation

A sequence {an} with perfect periodic autocorrelation and

period N , normalized to unit energy, satisfies [6]

Ra(τ) =

N−1∑

n=0

ana∗
n+τ =

{
1 : τ = 0
0 : τ 6= 0

(24)

where the index is to be interpreted modulo N . Such a

perfect sequence has a constant discrete periodic spectrum,

which follows directly from the Wiener-Khinchin relationship

between the periodic autocorrelation and its Fourier transform

[6] and (24):

DFT(Ra(τ)) = |DFT(an)|2 = 1 . (25)

The construction of perfect sequences is non-trivial. Two

constructions of sequences suited for implementation of pre-

compression, ternary and polyphase sequences4, are cited in

the following. For further constructions, refer to, e.g., surveys

by Fan and Darnell [6] or Lüke et al. [7] and references therein.

Perfect Ternary Sequences: Perfect ternary sequences are

perfect sequences with a ternary alphabet. Of special interest

are sequences with an ∈ {−1, 0, 1}. Ipatov constructs such

perfect ternary sequences from a (not necessarily binary)

maximum length sequence (m-sequence) {bn} with bn ∈ Fq

[6]. The period of such an m-sequence is qm−1. Any nonzero

element of Fq can be expressed as a power of a primitive

element α. Let m be odd. Furthermore, let q = ps, where p
is an odd prime and s is an integer. Then

an =

{
0 : bn = 0

1√
E

(−1)u+n : bn = αu (26)

is a perfect ternary sequence with period N = qm−1
q−1 , normal-

ized to its resulting energy E.

4Unfortunately perfect sequences with small phase alphabet are rare. The
longest known perfect binary sequence is {an} = {1, 1, 1,−1}, which means
N = 4 [7]. The longest known quaternary perfect sequence yields N = 16
[7]. This is obviously too short for precompression.

Perfect Polyphase Sequences: Perfect polyphase sequences

are perfect sequences with an = ejβn . The following con-

struction is due to Zadoff and Chu [6]. Let M be an integer

coprime to N . Then, with 0 ≤ n < N ,

an =

{
1√
N

e
jπM

N
n2

: N even
1√
N

e
jπM

N
(n+1)n : N odd

(27)

is a normalized perfect sequence of length N .

B. Compression matrices for spectrum estimation and imple-

mentation notes

Let an be a normalized perfect sequence. Construct A as

follows:

A =










a0 a1 a2 · · · aN−1

aN−1 a0 a1 · · · aN−2

aN−2 aN−1 a0 · · · aN−3

...
...

. . .
. . .

...

aN−(C−1) · · · · · · aN−C−1 aN−C










. (28)

Such a circulant matrix A with rows of time-shifted perfect

sequences fulfills assumption 5), AA∗ = I, as the rows of A

are orthogonal.

Another important property of the constructed compression

matrix A is preservation of the PSD. Any circulant matrix is

diagonalized by the Fourier matrix F, and, more specifically

[8]

A = F diag(Fa)F−1 (29)

holds. The eigenvectors of the projection are hence given by

the columns of the Fourier matrix and the eigenvalues are

given by the DFT of the first row of A. They have, due to

(25), constant amplitude. Hence, the projection introduces only

a phase shift, the PSD is preserved.

Precompression can be implemented efficiently in hardware

as time shifted preintegration as is discussed in [1]. Perfect

ternary sequences are a good choice due to the small number of

phases and ease of implementation in analog hardware. Using

digital signal processing, other sequences can also easily be

implemented - perfect polyphase sequences are an obvious

choice as they are available for arbitrary N .

IV. SIMULATION RESULTS

The results from a compressed spectrum estimation can be

seen in Figure 1. For better comparison with uncompressed

estimators, the same input signal as in [5] was used. Com-

pression is based on an Ipatov sequence of length N = 1057.

The uncompressed case C = N is also shown (dotted line);

for a non-parametric estimator this can be considered the best

possible estimation. For C = 300 (solid line), which indicates

a compression to 28%, the estimated spectrum is close enough

to the uncompressed case to use it for applications such as

energy detection. Both results are averages over 10000 trials,

the dashed lines indicate one standard deviation from the

compressed estimator.



10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

20

25

30
Compressed approximate ML estimates, M=151, N=1057

bins

dB

 

 

C=300
C=1057

Fig. 1. Comparison between compressed and uncompressed spectrum esti-
mates. Spectrum is generated from an ARMA (4,4) process with A(q−1) =
1 − 0.2q−1 + 1.61q−2 + −0.19q−3 + 0.8556q−4 and C(q−1) = 1 −
0.21q−2 + 0.25q−4.
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Fig. 2. Mean performance of compression factors C/N for different numbers
of observation N .

To quantify the effects of the compression, the integrated

normalized mean square error (INMSE) is introduced:

INMSE =
1

M

M∑

k

E

[

(φ̂k − φk)2

φ2
k

]

. (30)

This measure compares the estimation to the real spectrum.

Figure 2 shows the INSME for different compression rates

and different block lengths. Here, Zadoff-Chu sequences were

used to facilitate the scaling of N . As seen in the figure, the

INMSE converges towards the respective uncompressed error

(dashed line). It is worth noting that even for high compression

rates, high and low energy regions can be distinguished with

high reliability.

V. CONCLUSION

Based on the maximum likelihood approach of Stoica

and Sundin, it was shown that linear precompression with

compression matrices formed from perfect sequences offers

a simple trade-off between data rate and accuracy in spectrum

estimation. Key properties of the proposed compression matrix

are row-orthogonality and constant amplitude of eigenvalues.

An estimator with linear precompression can be useful in

real-time applications to reduce the amount of data before

estimating the PSD. This gives a new degree of freedom when

analysing the approximate frequency content of non-stationary

signals. The time window length can be chosen independently

of the numbers of samples used for spectrum estimation; in

other words the time-window length can be changed without

changing the estimator.
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