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Abstract—Understanding the performance of a spectrum shar-
ing system by means of a hardware deployment is a challenging
task. Motivated by this fact, we propose a prototype of a
secondary system that co-exists with a primary system and simul-
taneously sustains the constraints defined by the regulatory. In
this paper, we propose several key-techniques for the secondary
system, which will be deployed on a hardware.

I. PROPOSAL

In order to render an optimum performance, we propose

a cross-layer optimization of the Secondary User (SU) sys-

tem. In this regard, corresponding to physical and medium

access layer, we illustrate key-techniques envisioned for the

challenge. More importantly, we briefly discuss the impact

of these techniques on the performance of the system and

consequently outline our proposed solution.

A. Physical layer

1) SU Waveform: The waveform design signifies the most

fundamental aspect of the secondary system. A suitable wave-

form delivers a high spectral efficiency for the secondary sys-

tem and low out-of-band emission, thereby causing minimum

interference to the adjacent primary channels. Motivated by

this fact, we employ Filter Bank Multi Carrier (FBMC) for

the secondary transmission. In addition, we investigate the

performance of FBMC against OFDM, in order to ensure

that we exploit the benefits of FBMC over state-of-the-art

waveform.

2) Sensing: In spectrum sharing, protecting the primary

receiver against interference is an absolute paramount. For

detecting a primary signal, several detection techniques such

as Energy Detection (ED), matched filtering and feature-based

detection exist. Due to its versatility towards unknown primary

signals, ED is widely investigated in the literature. In the view

of this, we employ ED at the Secondary Transmitter (ST).

Probability of detection (Pd) and probability of false alarm

(Pfa) quantify the performance of the secondary system. From

the regulatory perspective, Pd is critical for the primary system

because it precludes the ST from causing interference at the

Primary Receiver (PR). In this regard, we propose a constant

detection rate, according to which the ST sustains a minimum

level P̄d such that Pd ≥ P̄d. According to [1], threshold ǫ in

correspondence to the ED is determined as

ǫ = P̄rcvd

⎛
⎝Q

−1(P̄d)
√

2

N
+ 1⎞⎠ , (1)

where Q−1(⋅) represents inverse Q-function [2], N is the

number of samples used for sensing and P̄rcvd is the average

power received at the ST from the Primary Transmitter (PT).

In practice, to determine ǫ, the knowledge of P̄rcvd is required.

Hence, we acquire this knowledge during the learning phase

of the challenge.

However, with additional knowledge about the primary

system, e.g., its frame structure (preamble sequence), we

propose a feature-based detector as a secondary detector. This

is done to improve the performance of our detector.

3) Beamforming: With the existence of multiple antennas,

we employ: i) receiver beamforming at the ST and, ii) receiver

beamforming at the Secondary Receiver (SR). During the sens-

ing period, the ST could steer its beam to improve the quality

of the link between the PT and the ST, thereby increasing the

received power from the PT. This would further enhance the

detector performance. During data transmission, the SR would

steer its beam towards the ST, this would improve the power

received over the secondary link, thus, leading to an increase

in the SU’s throughput. Particularly at the SR, it is important

to consider the interference from the PT. In this regard, we

implement matched filtering to improve signal to noise ratio

plus interference at the SR. Most importantly, the pre-factors

required to perform transmitter and receiver beamforming are

determined during the learning phase.

4) Antenna Diversity: As a fallback solution to beamform-

ing, we utilize antenna diversity at the ST that improves the

performance of our detector. To accomplish this, we assume

that the coherence time is larger than sensing duration and the

antennas encounter independent fading. Each antenna under-

goes a square law and integration operation of the primary

signal resulting in energy samples {y1, y2, ..., yL} from L an-

tennas. These energy samples go through either a combination

(ySLC = ∑L

i=1
yi) or selection (ySLS = max{y1, y2, ..., yL})

process [3].

5) Time-Frequency Agility: In addition to the performance

of the detector, it is significant for the ST to utilize the

available time-frequency gaps in the Primary User (PU) spec-

trum efficiently. Hence, it is reasonable to deploy a hardware

that could scan the PU spectrum and simultaneously procure

minimum latency. Here, latency signifies the interval between

the detection of a time gap and start of SU transmission. This

requirement can be proceeded with a hardware implementation

(FPGA or ASIC). However, most of the existing software

defined architectures have either limited or no FPGA space



available for incorporating sensing and the aforementioned

techniques. In order to breakthrough this hardware bottleneck,

we perform time-frequency agility by means of a software

that scans a given channel (5MHz) and allows hopping across

the PU channels. With this, we employ sensing and proposed

techniques for this channel. A hardware demonstration of such

a system that performs sensing while hopping through the

GSM downlink channels is presented in [4]. As an extension

to existing software based methodology, we plan to port the

proposed techniques, particularly the sensing, to FPGA.

B. Medium Access Layer

1) Learning: Apart from the physical layer techniques,

a further enhancement in the performance of the secondary

system is procured by incorporating the learning process,

whereby the ST captures the PU’s medium access. In practice,

the ST is required to select a single PU channel from the

available channels and to perform sensing, followed by data

transmission, once the selected channel is found idle. Hence, to

utilize the time resources efficiently, it is important to optimize

this selection process. In this regard, we apply static learning

and reinforcement learning at the ST.

According to static learning, the ST maintains a belief vector

[5] Λ = [u1, ..., ui, ..., uN ] for N PU channels, where ui corre-

sponds to the utilization probability for the ith channel. Now,

the selection is in accordance to the utilization probabilities

for each channel in the Λ, where Λ is determined during the

exploration/learning phase. The nomenclature static signifies

that Λ is never updated during the exploitation/optimization

phase. Hence, the channel with least utilization probability is

always the first channel selected for sensing.

In contrast to static learning, subject to reinforcement learn-

ing, the ST updates Λ during the exploitation phase. This

update on Λ is carried out by imposing a penalty when the

selected channel i is found busy. This penalty, added to the

ui, prevents the ST from selecting the penalized channel for

a certain duration. This duration corresponds to the expected

busy period of the penalized channel.

II. PROOF-OF-CONCEPT

Here, we present the hardware feasibility of the techniques

discussed in the previous section. In order to investigate the

performance of the secondary system subject to the proposed

techniques, a primary system compliant to IEEE 802.15 has

been deployed, cf. Fig. 1. The transmission based on FBMC

and OFDM has been implemented, Fig. 2 illustrates a suc-

cessful reception of the two waveforms at the SR. Finally,

the performance of the learning algorithms has been depicted.

Fig. 3 illustrates the exploited opportunities in reference to the

total opportunities generated in four PU channels, given the

constraint that only a single PU channel from four channels is

selected for sensing. To evaluate the performance of learning

algorithms, an optimum strategy is considered, in which, once

an opportunity is available in any of the four channels, it will

be utilized by sensing the particular channel.

Fig. 1. Hardware setup demonstrating the primary and secondary system.
The key-techniques mentioned in the paper are implemented on a software
running on the host computers.
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Fig. 2. Normalized power spectral density of the received signal at the SR
for different SU waveforms, where transmission bandwidth = 5MHz.
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Fig. 3. An illustration of the performance in terms of exploited opportunities
with different learning algorithms.
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