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Abstract—A simple and cost efficient frequency hopping radar
waveform which has been developed to be robust against mutual
interference is presented. The waveform is based on frequency
hopping on the one hand and Linear Frequency Modulation Shift
Keying (LFMSK) on the other hand. The signal model as well as
the radar signal processing are described in detail, focusing on
the efficient estimation of range and Doppler of multiple targets
in parallel. Finally, the probability of interference is estimated
and techniques for interference mitigation are presented showing
a good suppression of mutual interference of the same type of
radar.

I. INTRODUCTION

In recent years more and more radar systems in unlicensed
bands have come to market resulting in an increasing
interference level. Thus, new waveforms have to be developed
being robust against mutual interference. Furthermore, in order
to successfully compete in the market, the radars have to be
cheap and thus, the hard- and software have to be as simple and
cost efficient as possible. A well known and widely used radar
waveform in automotive and automation markets is Linear
Frequency Modulation Shift Keying (LFMSK) [1] which
forms the basis of the developed frequency hopping radar
waveform. It is based on a proposal in [2] where the author
suggests to scramble the linear increasing frequency steps of
LFMSK correspondent to a random permutation. However,
this method leads to some problems in a dynamic scenario
with multiple moving targets. To overcome these difficulties,
especially the signal processing part of the waveform has been
extended.

This paper is organized as follows: In Section II the
frequency hopping signal is presented followed by the radar
signal processing techniques in Section III. Section IV presents
some analytical aspects as well as simulation results of the
proposed radar system.

II. SIGNAL MODEL

The radar signal is a modified version of a LFMSK signal
where the linear increasing frequency steps are replaced by a
random permutation of these steps. This results in a frequency
hopping like signal where the hopping sequence is a random
permutation π of length N , where N is the number of different
steps. Thus, the probability that two independent radar systems

chose exactly the same sequence π is given by

P (Π = π) =
1

N !
. (1)

The height of one step is ∆f = B
N , where B is the total

occupied bandwidth of the frequency hopping signal. Each
possible frequency is transmitted exactly once due to the
random permutation. Fig. 1 shows an exemplary hopping
sequence for N = 1024 and B = 150 MHz.
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Fig. 1. Exemplary frequency hopping sequence of the proposed waveform

The analytical transmit (Tx) signal can be described as a
sum of complex oscillations of the particular length T

N and
the frequency f(n) = B

N π(n),

s(t) = ATx

N−1∑
n=0

ej2π(fc+B
N π(n))t · rect

(
t− T

N n
T
N

)
, (2)

where T is the duration of the whole radar signal, fc is the
carrier frequency, π(n) is the n-th number of the permutation
and rect(t) the rectangular function defined in [3].

The receive (Rx) signal is an attenuated, time and frequency
shifted version of the Tx signal. In the case of multiple targets,
the reflected signals of all Nt objects are superimposed at the
receiver resulting in

r(t) =

Nt∑
i=1

ARx,i

N−1∑
n=0

e
j2π(fc+B

N π(n))
(
t− 2·(Ri−vi·t)

c

)
·

rect

(
t− Ri−vi·t

c − T
N n

T
N

)
.

(3)



The down converted and low pass filtered Rx signal is
sampled at a sampling rate of fs = N

T correspondent to
LFMSK. Thus, from each frequency step only one sample is
taken resulting in a total of N complex values. The sampling
point is chosen at the end of each step due to the settling time
of the oscillator after each frequency hop in order to avoid
transients. Neglecting the rectangular functions, the sampled
baseband signal is given by

x(n) =

Nt∑
i=1

Ai · e−j2π
2fcRi
c · ej2π

2vi
c (fc+B

N π(n))
T
N n·

e−j2π
B
N π(n)

2Ri
c .

(4)

Assuming that the bandwidth is much smaller than the carrier
frequency, B � fc, (4) can be simplified to

x(n) ≈
Nt∑
i=1

Ai ·e−j2π
2fcRi
c ·ej2π

2fcviT

c
n
N ·e−j2π

2RiB

c
π(n)
N . (5)

III. RADAR PROCESSING

For simplification the signal processing is outlined initially
for a single target scenario. Further on also the case of multiple
targets is treated. If only one target with no Doppler (v = 0)
is considered, (5) can be rewritten to

x(n) = A · e−j2π
2fcR
c︸ ︷︷ ︸

=A′

·e−j2π 2RB
c

π(n)
N . (6)

The first exponential term is just a constant phase offset
and can be combined with A to the complex amplitude A′

whereas the second term can be used to extract the range
information. Therefore, the samples are reordered according to
the permutation sequence used on Tx side. Using the relation
π−1 ◦π = π ◦π−1 ≡ id, where id is the identity function, the
reordered signal is given by

xord(n) = x
(
π−1(n)

)
= A′ · e−j2π 2RB

c
n
N , (7)

where the second exponential term shows a linear increasing
phase. Thus, an IFFT can be used to estimate the range of the
target by determining the maximum of the IFFT spectrum.

However, if the target is moving, the Rx signal is frequency
shifted by a Doppler offset. This results in a linear increasing
phase term in x(n) as it can be seen in (5). After reordering
the samples, on the one hand the second term shows a linear
phase, but on the other hand the linearity of the first term is
destroyed resulting in a noise like spectrum. To avoid this,
the Doppler shift has to be eliminated before reordering the
samples. One possibility would be to estimate the frequency
offset by an additional constant CW tone emitted before
each hopping sequence. However, this would increase the
duration of one Tx cycle and possibly be susceptible for
interference. Additionally, multiple targets can have different
Doppler shifts and thus the frequency offsets have to be
assigned unambiguously to the different distances of these
targets. To overcome these disadvantages multiple frequency
offsets are eliminated in parallel regardless of the real Doppler
shifts of the targets. Therefore, the sampled baseband signal

is described by a vector x = [x(0) x(1) . . . x(N − 1)]
of length N which allows all following signal processing
steps to be written in matrix vector notation. To eliminate
a frequency offset, this vector has to be multiplied element-
wise with a complex cosine signal of the same length and
the negative Doppler shift. Because multiple Doppler shifts
shall be removed in parallel, a matrix X ∈ CN×N is formed
consisting of N -times the vector x:

X =

x
...
x

 . (8)

An efficient way to perform the elimination in parallel is to
multiply X element-wise with a DFT-matrix WN ,

X̃ = X ◦WN . (9)

Here,

WN =


1 e−j2π

(−N2 )·1
N2 . . . e−j2π

(−N2 )·(N−1)

N2

1 e−j2π
(−N2 +1)·1

N2 . . . e−j2π
(−N2 +1)·(N−1)

N2

...
...

. . .
...

1 e−j2π
(N2 −1)·1

N2 . . . e−j2π
(N2 −1)·(N−1)

N2


.

(10)

is a vertically shifted version of the original DFT-matrix
[4]. Thus, the frequency offset of zero appears at row index
m = N

2 , m ∈ {0, . . . , N − 1}. Furthermore, the vertical axis
directly corresponds to the velocity axis.
Afterwards, the columns of X̃ have to be reordered according
to the inverse permutation:

X̃ord(m,n) = X̃(m,π−1(n)) . (11)

To get the range axis, for each row of X̃ord(m,n) an IFFT
has to be calculated, resulting in

X̃ord(m, k) = IFFT
{
X̃ord(m,n)

}
. (12)

To detect the targets, a threshold γ can be applied,
identifying all values with X̃ord(m̂, k̂) ≥ γ to be a target,
whose range and velocity can be directly estimated from the
two-dimensional (2D) radar image. Fig. 2 shows an example
with to targets at 20 m and 25 m and velocities of −48 km/h
and 16 km/h.

The separation of multiple targets is possible due to the sum
orthogonality within the IFFT. Only the reflected signal that
corresponds to the actual frequency offset that is corrected
shows a linear increasing phase after the correction resulting
in a peak after the IFFT. This can be seen if we consider the
case fD,1 = 2fcv1

c = l
T , where fD,1 is the Doppler shift of

target 1:

X̃ord(m = l, n) =

A′1 · ej2π ( 2fcv1T
c −l)︸ ︷︷ ︸
=0

π−1(n)
N · e−j2π

2RiB

c
n
N +

Nt∑
i=2

A′i · ej2π
(

2fcviT

c −l
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6=0

π−1(n)
N · e−j2π

2RiB

c
n
N .

(13)



Fig. 2. 2D Radar image with 2 targets

The Doppler shift of target 1 is corrected whereas the
remaining frequency offsets of the other targets lead to
scrambled phase terms after the inverse permutation. Thus,
after calculating the IFFT,

X̃ord(m = l, k) = A′1 ·
1

N

N−1∑
n=0

e−j2π
2RiB

c
n
N · ej2π nkN︸ ︷︷ ︸

=1 for k= 2RiB

c

+
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i=2

A′i ·
1

N

N−1∑
n=0

e
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)
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N · e−j2π

2RiB

c
n
N · ej2π nkN︸ ︷︷ ︸

≈0

,

(14)

a peak only appears at the Doppler and range of the
correspondent target. In the spectrum of the signals of all
other targets with different Doppler shifts the random phase
distribution after reordering the samples leads to a destructive
superposition of the exponential terms.

In order to get a better velocity accuracy and to reduce
the straddle loss a finer frequency grid can be chosen for the
correction matrix W. Then W is spanned by the dimensions
M × N with M ≥ N and ∆f = fs

M . However, the velocity
resolution itself stays unaffected. The range resolution can also
be increased by zero padding which is done after the element-
wise multiplication to avoid the unnecessary multiplication
with zeros. Thus, only the computational effort of the IFFT
increases but not the number of element-wise multiplications
between X and W.

IV. SIMULATION SETUP AND RESULTS

A simulation setup consisting of one target and one
interferer of the same radar type and the parameters as shown
in Table I is done in MATLAB. A single point target at a
distance of R = 50 m is considered with a radar cross section
of σ = 10 m2. The figures are normalized in such a way
that the target peak of this object has a height of 0 dB after
the IFFT. The interference and the reflected signal from the
target have the same power level to illustrate the interference
mitigation effects.

TABLE I
RADAR PARAMETERS

Symbol Parameter Value

fc Carrier frequency 24 GHz

B Total signal bandwidth 150 MHz

N Number of frequency steps 1024

T Signal duration 14 ms

∆R Range resolution c
2B

= 1 m

Rmax Maximum unambiguous range N · ∆R = 1024 m

∆v Velocity resolution c
2fcT

= 0.45 m/s

vmax Maximum unambiguous velocity ±N
2

· ∆v = ±229 m/s

A. Probability of interference

The bandwidth B is divided into N equally spaced steps.
Each frequency step is chosen once in every Tx cycle but
the position is random. However, the interference occurs only
at the steps, where the actual Tx frequencies of the two
independent systems coincide. The probability that the random
permutations of these two systems coincide in exactly k out
of N steps can be derived using the Rencontres numbers,
mentioned in [5]. In general, the Rencontres number DN,k

describes the number of permutations of length N that have
exactly k fixed points. Thus, with a number of N ! different
permutations in total, the probability that two different hop
sequences coincide in exactly k positions is given by

P (X = k) =
DN,k

N !
=

1

k!
·
N−k∑
i=0

(−1)
i

i!
. (15)

For an increasing number of permutation sets N the
probability distribution can be approximated by a Poisson
distribution with the expected value µ = λ = 1 as shown
in Fig. 3. Furthermore, it can be seen, that the probability for
a collision of more than 4 frequency hops is lower than 0.4 %.
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Fig. 3. Probability P , that two random permutations coincide exactly in k
out of N = 1024 points

B. Interference Mitigation

The interference mitigation is based on two different effects:
on the one hand the scrambling of the interfering hop sequence
and on the other hand due to the low pass filtering when the
two hop sequences differ. Fig. 4 shows the IFFT of the sampled



baseband signals of the reflected and the interfering signal
(both v = 0) before reordering the samples correspondent
to the hop sequence of the transmitter. Both signals overlap
in exactly one frequency step and have the same Rx power
to illustrate directly the interference mitigation. As it can be
seen in Fig. 4(a) the mean spectral power is the same before
reordering and without filtering. When applying a low pass
filter with a cutoff frequency of fcut = fs

2·N , the interfering
signal is attenuated. The remaining power results mainly from
all frequency steps that coincide and thus are not filtered out.
Also frequency steps from the interfering and the reflected
signal that are close together can have some influence due to
the limited filter order. However, this effect can be mitigated by
higher filter orders with the disadvantage of higher hardware
cost.
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Fig. 4. Power spectrum of the reflected and the interfering signal before
reordering the samples (fD = 0)

After reordering the baseband samples a peak at R = 50 m
can be seen in the IFFT in Fig. 5(a). The attenuation of the
interfering signal is due to the sum orthogonality that has been
mentioned in Section III and shows a factor of approximately
10 · log10N = 30 dB. By low pass filtering the Rx signals
before reordering the samples the interference mitigation is
limited to a theoretical factor of 20 · log10

N
Nmatch

, where
Nmatch is the number of coinciding frequency steps. However,
in order to achieve this factor an ideal low pass filter would be
necessary. Due to the second interference mitigation effect by
the inverse permutation the filter order can be reduced without
reducing the interference suppression too much. Thus, also the

complexity and the hardware cost can be reduced.
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Fig. 5. Power spectrum of the reflected and the interfering signal after
reordering the samples (fD = 0)

V. CONCLUSION

A simple interference robust radar waveform has been
proposed with the capability to estimate range and Doppler
of multiple targets simultaneously. The signal processing
steps haven been outlined and the methods for interference
mitigation have been described in detail and illustrated in an
example. The result shows a good reduction of the interference
power after the signal processing for interfering radars of the
same type but different random hop sequences.
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