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Abstract— Locating a mobile transmitter passively is a chal-
lenging task. Recently, the most preferred method for this matter
is the Time Difference of Arrival (TDOA) method. In this
paper, different techniques for enhancing the TDOA results are
introduced. They generally give an idea about the challenges of
TDOA. We analyze different ways of using consecutive measure-
ments as well as redundant sensors. We do that focusing on
one specific algorithm using TDOA measurements, the residual
weighting algorithm (RWA). Its main advantages lie in the low
computational complexity and the fact that it doesn’t require
additional a priori information. We analyze the performance
of the algorithm through simulation of different scenarios and
present the most preferable application. We show what kind of
additional averaging could be used to enhance the results.

I. INTRODUCTION

Estimating the position of a transmitter is an important

issue especially for mobile vendors as well as for frequency

regulators. It has gained importance lately because of the in-

creased interest in localizing a mobile user for emergency and

security cases. While many techniques have been introduced

througout the past two decades, Time Difference of Arrival is

considered the most important method when trying to locate a

transmitter passively and with as little a priori information

as possible. This method only requires a synchronization

of the sensors among each other and doesn’t require any

additional information from the mobile entity. Methods for

solving the TDOA problem are based on solving a least

squares estimation problem of the non linear equation system

of the TDOA geometry. They are basically either closed form

solutions or iterative methods. Examples are [1], [2], [3],

and [4]. Their main trade off lies between the computational

complexity and the estimation accuracy. In highly erroneous

environments, additional averaging techniques are neccessary

to obtain accurate results.

While least squares estimation is sufficient for zero mean

measurement errors, it results in biased solutions in case of

a biased error. As Non Line of Sight (NLOS) propagation

is expected in mobile channels, the need for dealing with

biased errors in TDOA is obvious. Many methods have been

developed for this matter [5], [6], [7]. Meanwhile, Kalman

Filters are mostly used as an estimation method for TDOA

[8],[9], mainly because of their robustness and high accuracy.

In this paper, we focus on one method, the residual weighting

algorithm introduced by Chen in [10]. The main advantage

of this method is the fact that it doesn’t depend on a priori

knowledge of the NLOS situation. We use this algorithm

to present the different aspects and challenges of TDOA in

general. We do that through analyzing many implementation

aspects of this algorithm. On the one hand we present the

constraints and bounds of this algorithm and on the other hand

we give solutions and tips on how to optimize the algorithm

for a given scenario.

The paper is organized as follows. Section II gives a brief in-

troduction to the TDOA problem and highlights the difference

between the zero mean error case and the biased error case.

Section III describes Chen’s algorithm and introduces different

techniques on how to enhance the position estimation using

this algorithm. Section IV describes the simulated scenarios

and shows the results of the different extra techniques that

were implemented in the algorithm. Section V draws the

conclusion and gives ideas for further work.

II. THE TDOA LOCATION ESTIMATION PROBLEM

Figure 1 shows a scenario of a TDOA sensor network ge-

ometry with three receivers Rx1
, Rx2

, Rx3
and one transmitter

Tx. For each pair of receivers, the TDOA between the receivers

is estimated in a first step. This step is not considered here and

is usually done by cross correlating the synchronized signals

of both receivers. The result is a time difference that can be

expressed as a distance difference di,j if the propagation speed

c is known:

di,j = c · TDOAij = di − dj (1)

di =
√

(xi − x)2 + (yi − y)2 (2)

Equation (2) calculates the distances between the source and

the sensors for the two-dimensional case. Inserting equation

(1) in equation (2) results in the TDOA equation system given

in equation (3). The system could be easily extended for the

three-dimensional case.

To reduce computation, one of the N sensors is chosen to

be the reference sensor and only N − 1 TDOAs are estimated

with reference to this sensor, resulting in a set of N − 1
equations given in (3) with two unknown values [x, y]. In an

error-free environment, the TDOA equations yield a set of

hyperbolas that intersect in one point, namely the transmitter

position (Fig.1). When error occurs, the hyperbolas shift and

can intersect in different points, creating ambiguity (Fig.2).

If the error can be modeled as additive white Gaussian noise,

then a least squares estimator (LSE) would deliver the optimal
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Fig. 1. TDOA-Geometry

result. For biased error sources, this solution would not yield

accurate results and can not be improved by averaging.

di,j =
√

(xi − x)2 + (yi − y)2 −
√

(xj − x)2 + (yj − y)2

(3)
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Fig. 2. Erroneous TDOA hyperbolas

III. EXTENSION OF CHEN’S ALGORITHM FOR TDOA

In a two-dimensional case, the minimum number of sensors

required to solve the TDOA equation is 3. Additional mea-

surements can be used to improve the results. Chen [10] does

that by arranging the sensors into different subsets containing

at least three sensors for the two-dimensional case. Each of

these subsets can therefore yield an estimate for the transmitter

location using a least squares estimator. For example, 5 sensors

contain 10 subsets using 3 sensors, 5 subsets using 4 sensors

and 1 subset using 5 sensors. Let Sq denote the receivers of

a subset q. Chen’s method combines the least squares results

of the different subsets using their residuals. A residual is

a measure of the deviation of an estimated value from the

measured value. In the case of Time Difference of Arrival

measurements, the residual of a subset q is calculated by:

Rq =

∑

i∈Sq,i 6=j

(di,j − d̂i,j)
2

|Sq| − 1
(4)

with di,j denoting the measured time difference according

to the cross correlation of the received signal pairs and d̂i,j
being the estimated time difference, i.e.,

d̂i,j =
√

(xi − xq)2 + (yi − yq)2−
√

(xj − xq)2 + (yj − yq)2

(5)

with (xq, yq) denoting the estimated transmitter position

calculated using the measurements of the receivers in subset

q.

The Residuum Weighted Algorithm (RWA) method weights

the subsets based on the following statement: subsets con-

taining NLOS receivers result, on average, in larger residuals.

This can be explained through analyzing the hyperbola shifts

according to the different errors. The additive noise results

in a random shift of the hyperbola, that leads, on average,

to shifts around zero due to the zero mean character of the

noise, whereas the NLOS error leads to constant shifts that

are proportional to the NLOS bias. So, if we compare the

intersection of three hyperbolas containing only zero mean

noise with three hyperbolas containing one biased hyperbola,

then the probability is higher, that the residual of the subset

containing NLOS receivers would be larger. For this reason,

the RWA weights the least squares estimates of each subset by

the inverse of their residuals. The final estimate is the weighted

sum divided by the sum of weights (eq. 6).

(

x̂

ŷ

)

=

∑

q∈QL
M

1

Rq
·

(

xq

yq

)

∑

q∈QL
M

1

Rq

(6)

QL
M is the number of subsets that were used to calculate

the end result. It has the minimum subset size M and the

maximum subset size L. If we have N receivers, then we

have a maximum of QN
3

receivers.

In this paper we investigate the following aspects:

• Which subset sizes should be used to calculate the final

result and which subset sizes are unneccessary?

• How can we enhance the result if we have consecutive

TDOA measurements? What are the possible techniques?

Which one is best?

• Under which circumstances does this algorithm work?

Concerning the first point: In the two-dimensional case, we

need at least three TDOA measurements to get an intersection

point of the two hyperbolas. Two hyperbolas would either

not intersect at all or would intersect in one point. In some

cases the hyperbolas intersect in two points, out of which



one is usually a clearly wrong solution. In all those cases, a

computation of the residual wouldn’t be possible and therefore

it wouldn’t be a measure of the estimation quality. Hence, a

minimum number of four receivers is needed for each subset.

On the other hand, using the full set with the maximum subset

size could only result in biased estimates in case of biased

errors.

The second point we analyzed was about how to ideally use

K consecutive TDOA measurements τ̂i,j . For that, we tested

the three following possibilities:

• TDOA Average: Calculate the average of the K Time

Difference measurements τ̄i,j using equation (7) and

use the average to estimate the transmitter position.

This technique has the additional advantage of reduced

computation, because the location estimation algorithm

is executed only once every K-measurements. The dis-

advantage would be the reduced update rate of the

transmitter position.

τ̄i,j =
1

K

K
∑

k=1

τ̂i,j(k) (7)

• Subset Average: Calculate K position estimations x̂q

for each subset and build the average of the estimated

positions for each subset, then calculate the final result

using the RWA.

x̄q =
1

K

K
∑

k=1

x̂q(k) (8)

• End Average: Calculate the position estimates using

Chen’s algorithm in each of the received measurements,

then estimate the final result through the mean of the K

position estimates.

x̄ =
1

K

K
∑

k=1

x̂(k) (9)

Concerning the third question about the constraints of

the algorithm, many scenarios with different geometries and

NLOS relations were simulated and will be presented in the

next section.

For the least squares estimation we have used the iterative

Taylor Series Estimation (TSE) method described in [4]. The

method starts with an initial guess and iteratively searches

for the minimum of the cost function through linearizing the

non linear function around the guess. The initial guess was

calculated using the centroid of the receiver setup, and for the

use of the subset method, the TSE was calculated once using

the full set of receivers and the result was used as the initial

guess for all the subsets.

The next section shows results of the different averaging

techniques in order to compare them to each other. In addition

to the different techniques, the results of the estimation using

only Line of Sight receivers are also plotted. This can be

seen as a comparison to methods that deal with detecting

NLOS receivers and eliminating them [5]. These methods

have two main drawbacks. On the one hand, they use less

sensors for calculating the position estimate, which results in

large errors in bad geometry setups. The other problem lies

in the assumption that there is one known receiver which has

Line of Sight, which is then used as the reference receiver.

Therefore, these methods can always assume a positive NLOS

measurement error.

IV. SIMULATION RESULTS

In the simulation, the generated TDOA measurements were

corrupted by zero mean Gaussian noise with a given standard

deviation (stdv) and were additionally corrupted by an NLOS

bias.

To make a reasonable conclusion about the performance

of the algorithm, each scenario was tested using 100000
different positions of the transmitter and the receivers. They

were randomly placed on a [1000 × 1000]m2 plane. For the

evaluation, two types of charts are shown, the cumulative

distribution function (CDF) of the estimation error, and the

root mean square error (RMSE). The RMSE is plotted over

varying noise standard deviation or varying Non Line of Sight

bias.
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with uniformly distributed bias [0, 1000]m

Figure 3 shows the results in a scenario with 4 Line of Sight

(LOS) receivers and 1 NLOS receiver. The standard deviation

of the noise was set to 50m and the NLOS bias was uniformly

distributed between [0, 1000]m. The figure shows the CDFs

of the estimation error for the different averaging techniques

that were mentioned before. It also shows the results of the

least squares estimation without further residual combining

(Taylor) and the results of Chen’s weighting algorithm without

time averaging (Chen-OneShot). As we can see, averaging the

TDOA measurements before calculating the position estimates

leads to the best results (Chen-TDOAAverage). Averaging the



subset results instead (Chen-SubsetsFirst) also shows good

results, but would additionaly cost more computations and

is therefore not reasonable. The difference in performance

between those two lies in the effects of linearizing the least

squares problem in the Taylor Series Estimation to maintain

low computational complexity. These linearization effects lead

to biased results that can not be totally cancelled out through

averaging. On the other hand, we can see that using the

residual weighting algorithm needs good subsets estimates to

obtain better results. Therefore, the additional averaging is

necessary. The performance of the algorithm without further

averaging is much worse.

Last but not least, we compare the results to the esti-

mation using only LOS sensors. The algorithm using only

LOS receivers (Taylor-LOS) produces the best results, but its

performance is close to Chen’s method after the measurement

averaging.

Figures 4 and 5 show the RMSE over varying standard

deviation of the noise and varying NLOS bias. Again, 5 re-

ceivers were simulated with one containing an NLOS bias. The

results show 2 things: the difference in performance between

the least squares estimator (Taylor) and the RWA increase with

increasing NLOS error. The larger NLOS errors lead to bigger

biases of the least squares estimates, and therefore lead to

much larger residuals. Figure 5 also shows that in case of Line

of Sight mitigation for all receivers, the least squares estimate

has the smallest RMSE because it optimizes the result using all

the information. Figure 4 shows the decreasing performance

of the RWA with larger standard deviation of the additive

noise. This goes back to the assumption Chen made about

the residuals of NLOS receivers. With increasing noise, the

difference between LOS and NLOS receivers isn’t clear in the

residuals. Comparing the results in Figure 5 to the estimation

using only LOS receivers shows again that with little NLOS

bias up to 100 meters, Chen’s method performs better when

considering random setups.

Figure 6 shows that RWA doesn’t perform well when none

of the subsets has LOS to the transmitter. At least one of

the subsets estimates should yield a bias-free result for the

algorithm to work. As we mentioned before, the minimum

subset size we need for the two-dimensional case is 4. This

means that we need at least 4 receivers with LOS to the

transmitter, only then will we have at least one good result

among the subset results.

V. CONCLUSION AND FUTURE WORK

In this paper, the RWA algorithm was used to analyze

different aspects of utilizing consecutive and geometrically

distributed TDOA measurements. First, it was shown that

additional time averaging is necessary to obtain good results.

For that matter, different possibilites of averaging consecutive

measurements were tested. The best results along with the low-

est computational complexity are achieved through averaging

the TDOA measurements.

On the other hand, it was shown that the least squares

estimation is sufficient when there’s no or little NLOS bias.
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The RWA should be applied when at least 4 receivers have

a direct path to the transmitter. If the available receivers are

distributed in a way that guarantees at least 4 Line of Sight

receivers for each possible transmitter position, then the NLOS

problem can be easily solved using the RWA. For the subset

sizes, the minimum number was chosen to be 4, while the

maximum number should be N − 1 assuming there is at least

one NLOS receiver.

Another important result was the comparison to algorithms

that detect and eliminate NLOS receivers. Assuming that these

algorithms always detect the right receivers, we have plotted

their performance in comparison to the RWA. The results

showed a slightly better performance. Nevertheless, if we can
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not assume that the receiver setup is geometrically convenient,

then RWA could be the right choice there, especially if we can

assume that the NLOS biases aren’t that big.
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