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Abstract—We discuss the performance of an adaptive FH-
CDMA ad hoc network under the influence of external inter-
ference where node positions are modeled by a homogeneous
Poisson point process. The optimum channel assignment that
balances internal network interference due to spatial reuse and
external interference is derived analytically for a path loss
and Rayleigh fading model. The performances of the resulting
hopping strategies are then compared to various suboptimal
hopping strategies such as non-adaptive hopping and min-max
allocation with constant QoS. It is found that adaptivity offers
a benefit only at low to medium node densities and that a
good suboptimal strategy can be based on hard exclusion of
bad channels (thresholding) with optional min-max allocation to
balance the load of active channels.

I. INTRODUCTION

The study of large dense wireless ad hoc networks is a topic

of recent research interest. In such dense wireless networks,

the limiting factor to transmission rates is interference, be

it self-interference due to spatial channel reuse or external

interference from other sources.

Most wireless systems today operate in a power limited

and not bandwidth limited regime. Also, various technical

difficulties complicate the design of very broadband wireless

systems: due to issues such as necessary dynamic range, power

consumption or necessary co-site interference attenuation,

in practical implementations of wireless systems the total

available tuning bandwidth is often much greater than the

effective receiver bandwidth of the physical layer. These facts

motivate the study of multi-channel medium access techniques

in wireless ad hoc networks.

In this paper we consider, within a geometrical model based

on a homogeneous Poisson point process (PPP), an adaptive

slow FH-CDMA system capable of adapting channel access

probabilities (and hence, the hopping pattern) according to

the external interference experienced in the channels and

internal interference generated by other nodes. Due to fast

variations in the spatial configuration of transmitting nodes1

adaption takes into account the expected spatial interference.

The questions to be answered are the following: What are the

highest possible gains of adaptive FH-CDMA and what are

the gains of practical suboptimal strategies?

For prior related work addressing the properties of an inter-

ference field of a homogeneous PPP spatial node configuration,

see [1], [2], [3] and references therein.

1Such variations naturally arise when nodes change from transmitting to
receiving and vice-versa, or when the network exhibits some mobility.

The remainder of this paper is structured as follows. In

Section II the system model is introduced. The transmission

capacity of networks under external interference is derived in

Section III for a Rayleigh fading and path loss interference

model. Section IV compares the considered strategies, while

Section V offers concluding remarks.

II. SYSTEM MODEL

A. Geometry, Channel and Receiver Model

A network consists of nodes distributed in the plane. The

total bandwidth B available for communication is split into M

orthogonal channels. At each time instance a subset of these

nodes transmits in a certain channel m ∈ M , [1, . . . ,M ].
Assuming that slotted Aloha is employed and channel access

is uncoordinated among the nodes, we model the transmit-

ter positions by a homogeneous independently marked PPP

Φ , {(Xi,mi)}
∞
i=1 of intensity λ, where the Xi ∈ R

2

denote the locations of transmitters and the mi are the marks

attached to the Xi that indicate the associated channel. We

assume that by the time of transmission, each transmitter

randomly chooses a channel according to the channel access

probabilities p for transmitting its message. For convenience,

we define Φm := {(Xi,mi)|Xi ∈ Φ, mi = m} as the point

process counting only those transmitters which transmit in

channel m. The intensity of Φm is denoted by λm = pmλ.

Each transmitter has an associated receiver at a distance2

r and transmits with power ρ. The transmitted signals are

attenuated by path loss and may also be subject to Rayleigh

fading. The path loss between two points x, y is given by

‖x − y‖−α, with α > 2. We assume that any interference is

treated as white noise.

Due to the homogeneity of the PPP, the resulting inter-

ference field obeys the same statistics at any point in the

plane. This allows characterizing the performance of the

whole network by the performance of a typical transmission.

Therefore, we place a probe receiver in the origin and an

associated probe transmitter r units away at location x. The

instantaneous SINR at the probe receiver in channel m is given

2This assumption poses a restriction on the system model but allows for
analytical tractability. The effect of r being different for every transmitter-
receiver pair on the results is investigated with numerical simulations (see
Fig. 3).
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where Nm is the noise level in channel m due to the external

interference, NSRm , Nm

ρr−α is the mean noise-to-signal ratio

in channel m. The variables G0, GN and Gi are exponentially

distributed with unit mean and capture the random fluctuations

in the received power due to Rayleigh fading at the probe

receiver. By setting GN ≡ G0 ≡ Gi ≡ 1, (1) reduces to the

path loss model.

The outage probability of the probe link operating in chan-

nel m is given by the reduced Palm probability [4]

qm(λm) , P
!x [SINRm < β]

(a)
= P [SINRm < β] , (2)

where β is the required SINR threshold and P
!x is the

probability measure with respect to the point process Φm∪{x}
without counting the point x, as the probe transmitter does not

contribute to the interference seen by the probe receiver. (a)

follows from Slivnyak’s Theorem, which states that P!x[·] =
P[Φ ∈ ·], if Φ is a PPP [4]. We define the overall outage

probability as

q(λ,p) ,

M
∑

m=1

pmqm(pmλ), (3)

i.e., we consider the average outage probability associated

with the channel access probabilities p. This expression can

be interpreted as the effective outage probability of a single

transmission.

Our primary metric of interest is the transmission capacity

(TC) [3], which is the density of concurrent transmissions

weighted by the success probability associated with this den-

sity, i.e.,

c(λ,p) , λ(1 − q(λ,p)). (4)

It is easy to see that for two p1 6= p2, c(λ,p1) 6= c(λ,p2)
in general, since q(λ,p1) 6= q(λ,p2). Therefore, the value of

c(λ,p) strongly depends on how the channel access probabil-

ities p are chosen.

B. Internal and external interference: Optimizing channel

access

Internal interference in a channel is the aggregated interfer-

ence generated by other nodes of the same network transmit-

ting in the same channel. External interference is interference

generated by sources outside the network. Both interference

sources affect the outage probability of a transmission in a

certain channel.

Our degree of freedom is the channel access probability

distribution p. If we choose to increase the load on one channel

by assigning more probability mass to it, we will increase the

outage probability in that channel. We are now looking for the

optimum distribution popt that maximizes the TC and hence

balances internal and external interference.

Definition 1. We define by popt the channel access probabili-

ties for which the average outage probability q(λ) is minimal

given some λ.

Lemma 1. The average outage probability q(λ) is a strictly

monotonically increasing function of λ if p = popt at every λ.

Proof: Proof by contradiction: Suppose that q(λ1,p1) ≥
q(λ2,p2) for some arbitrary λ1 < λ2. From the definition of

popt it follows that both q(λ1,p1) and q(λ2,p2) are minimal

at λ1 and λ2, respectively. Analyzing
∂qm(λpm)

∂λ |λ=λ2
we see

that this is, due to the nature of qm, always positive for

fixed p = p2. Thus, going “backwards” from λ2 to a point

λ, we have q(λ,p2) < q(λ2,p2). After reaching the point

λ = λ1, we observe that q(λ1,p2) < q(λ2,p2). Using the

initial assumption, we finally have

q(λ1,p2) < q(λ2,p2) < q(λ1,p1),

which is a contradiction to the assumption that p1 is optimal

and hence, q(λ1,p1) is minimal. Therefore, q(λ1,p1) <

q(λ2,p2) always holds.

Lemma 2. The maximization of λ(q) for a given q is equiv-

alent to minimizing q(λ) for a given λ.

Proof: From Lemma 1 we know that the average outage

probability q(λ) with p = popt is a strictly monotonically

increasing function of λ. Hence, for any pair (λ′, q′) gen-

erated by popt, we have that λ′ = maxp{λ(q
′,p)} and

q′ = minp{q(λ
′,p)} and the Lemma follows.

Using Lemma 2 we can now transform the problem of

maximizing the TC into the problem of minimizing the average

outage probability q(λ,p) over p given some λ.

C. Optimization Problem 1

The first problem strives to minimize the average outage

probability q(λ,p) from (3) as follows:

popt = argmin
p

M
∑

m=1

pmqm(pmλ) s.t. ‖p‖1 = 1, pm ≥ 0 .

(P1)

By Lemma 2, the solution of (P1) yields the transmission

capacity of (4). If all qm are convex, the problem can be

solved with convex optimization [5, pp. 20ff]. If the qm are

non-convex, the optimization problem can generally only be

solved heuristically. Due to their nature as cumulative density

functions, the qm are monotonically increasing in λm, however

not necessarily convex.

D. Optimization Problem 2

Practical systems will strive to have the same expected

packet error probability, every time channel is accessed, hence

assuring constant quality of service (QoS). An optimization ap-

proach that achieves this is based on minimizing the maximum

weighted outage probability associated with the M channels:

popt = argmin
p

max
m

pmqm(pmλ) s.t. ‖p‖1 = 1, pm ≥ 0 .

(P2)



From [5, Theorem 2.4.1], we know that for the global min-

imum of (P2), ∀i, j : λiqi(λi) = λjqj(λj) = const holds:

The access probability weighted packet error probability in

every channel remains constant. The solution of (P2) hence

yields the transmission capacity under constant QoS. Due to

the monotonicity of λmqm(λm), this optimization problem

has a unique global minimum and efficient algorithms exist

to solve it numerically [5, pp. 31ff].

III. TRANSMISSION CAPACITY UNDER EXTERNAL

INTERFERENCE

In the following, we consider well known interference

functions qm arising in a path loss only interference field and

in a Rayleigh block fading interference field. For the pure path

loss model with α = 4, qm is given by [3]

qpl
m(λm) , 2Q

(

λmξpl
m

)

− 1, (5)

where ξ
pl
m ,

√

π
2

πr2√
γm

and

γm ,

{

1
β − NSRm , 1

β − NSRm > 0

0 , otherwise.
(6)

Similarly, for the Rayleigh block fading model, qm is given

by [6]

qrl
m(λm) , 1− e−λm∆ξrl

m, (7)

where ∆ , 2π2 r2β2/α

α sin 2π/α and

ξrl
m ,

{

1
1+βNSRm

, gN ∼ Exp(1)

e−βNSRm , gN ≡ 1.
(8)

A. Optimal strategy for path loss only model qm = qpl
m

The adaptive channel allocation minimizes the outage prob-

ability by adapting pm and hence λm according to the quality

level γm of the respective channels. The problem (P1) can be

written as

min
p

M
∑

m=1

pmqm(pmλ) = min
po,pL+1,...,pM

po +

M
∑

m=L+1

pmqm(pmλ)

(9)

s.t. po +

M
∑

m=L+1

pm = 1, po, pm ≥ 0 ,m = L+ 1, . . . ,M,

where 1, . . . , L are the indices3 of channels for which γm = 0
and hence q(λm) = 1, and po is the channel access probability

assigned to these channels. The probability po can be inter-

preted as the optimum back-off probability needed to maxi-

mize transmission capacity by reducing internal interference.

The optimizing problem (9) is generally non-linear and non-

convex with non-linear non-convex monotonically increasing

objective function and linear equality and inequality con-

straints. If the function q can be expressed analytically, as

in the two cases considered here, the objective function of

3A reordering might be necessary.

(P1) can be tested for convexity by showing positive semi-

definiteness of the Hessian matrix. Additional constraints for

small λm, and hence total λ, can then assure convexity. In

the following, we will derive the optimum solution under

these additional constrains, focusing on small λ and thus

small (practically relevant) outage probabilities. We note three

relevant observations:

Lemma 3. The optimization problem (P1) with qm = qpl
m and

α = 4 is convex, if ∀m : 0 ≤ λm ≤
√
2

ξpl
m

.

A proof is given in the appendix.

Lemma 4. The optimization over po can be performed sepa-

rately after finding the solution for pL+1, . . . , pM .

Proof: Optimization over pL+1, . . . , pM of the objective

function of (9) results in a function that depends on po. The

minimum of this function is also the global minimum.

Lemma 5. A necessary condition for an extremum of (P1)

with qm = qpl
m is that ∀i : qm(λi, γi) = τ , τ ∈ [0, 1].

A proof is given in the appendix.

Since q(λm) is strictly monotonically increasing with re-

spect to λm, for a given po minimizing q(λm) is equivalent

to minimizing its argument. With this fact and Lemma 4 and

Lemma 5, the optimization problem over pL+1, . . . , pM for a

given po can hence be written as

popt(po) = arg min
pL+1,...,pM

τ (10)

s.t. τ −
γm

(pmλ)
α
2

= 0,

po +
M
∑

m=L+1

pm = 1, po, pm ≥ 0 ,m = L+ 1, . . . ,M.

The problem in (10) is a convex optimization problem with

linear objective function and convex equality constraints and

linear inequality constraints. This optimization problem can

be analytically solved with the help of Karush-Kuhn-Tucker

(KKT) conditions4. Using Lemma 3, we have the following

result:

Theorem 1 (TC with optimal strategy, path loss only). The

solution of the optimization problem (P1) with qm = qpl
m in

the convex region is given by

p∗m(λo) =
γ

2
α
m

M
∑

m=L+1

γ
2
α
m

(1 − po) for m = L+ 1, . . . ,M. (11)

and p∗m = po

M−L otherwise.

Proof: The solution follows by solving the standard KKT

equations.

Note that (11) holds for all α, it is necessarily a local

optimum. It will be a global optimum for all values of α

if conditions on the per channel density, similar to those of

Lemma 3, are met (in case of α = 4 convexity is assured by

Lemma 3). To determine po, we numerically solve (9) with

the obtained p∗m(po).

4See e.g. [5, Section 2.1] for an introduction.



B. Optimal strategy for Rayleigh fading model q = qrl

Analogously to the path loss case, we state the following

observation:

Lemma 6. The optimization problem (P1) with qm = qrl
m is

convex, if ∀m : λm∆ ≤ 2,m = 1, . . . ,M .

A proof is given in the appendix.

Theorem 2 (TC with optimal strategy, Rayleigh fading). The

optimal p∗m ∈ popt of the optimization problem (P1) with qm =
qrl
m in the region λm∆ ≤ 2 are given by

p∗m = max

[

0,
1

λ∆

(

1−W

(

ν∗e

λξrl
m

))]

, m = 1, . . . ,M,

(12)

where ν∗ is the solution of

M
∑

m=1

max

[

0,
1

λ∆

(

1−W

(

νe

λξrl
m

))]

− 1
!
= 0. (13)

and W(·) denotes the principal branch of the Lambert-W

function.

Proof: The solution follows by solving the standard KKT

equations.

IV. NUMERICAL EVALUATION

A. Suboptimal channel access strategies

In the following, we describe the following suboptimal

channel access strategies: Naı̈ve, best channel, threshold-based

and min-max optimized threshold-based channel access.

1) Naı̈ve channel access: For the naı̈ve strategy, every

node selects a channel with equal probability, i.e., p =
[ 1
M , . . . , 1

M ]T . The resulting density in each channel is λm =
λ
M for all m. This corresponds to standard FH-CDMA.

2) Best channel access: For the best (single) channel access

strategy, only the best available channel, i.e., the channel with

the least NSRm, is used. The corresponding intensity λm is

given by

λm =

{

λ ,m = argmin
n

{NSRn|n = 1, . . . ,M}

0 , otherwise.
(14)

3) Threshold-based channel access: With the threshold

based channel access strategy, the best K channels as well

as all remaining channels with sufficient quality are used. The

criterion for a channel m to be active is NSRm ≤ κ, where

κ denotes the quality threshold. Let the set of active channels

be denoted by

K , {m ∈ M : NSRm ≤ κ∨NSRm among theK smallest}

and let |K| with |K| ≥ K be the number of active channels,

then this channel access strategy assigns transmission density

to the channels according to

λm =

{

λ
|K| ,m ∈ K

0 , otherwise.
(15)

This thresholding strategy is comparable to the mechanism

implemented in IEEE 802.15.1 [7].

4) Min-max optimized threshold-based channel access:

In this optimized version of threshold-based channel access,

the channel access probabilities for the active channels are

determined by solving the min-max problem over all active

channels, i.e.,

min
p

max
m

pmqm(pmλ)

s.t. pm ≥ 0 ifm ∈ K,

pm = 0 ifm ∈ Kc,

‖p‖1 = 1.

Again, min-max channel allocation assures constant QoS.

B. Comparison of channel access strategies

Parameter r β α M NSR κ K

Value 10 1 4 10 −5 dB 5 dB 3

TABLE I
EVALUATION PARAMETERS

For numerical evaluation and comparison of the strategies,

the parameters given in Table I with NSR ∼ Exp and mean

NSR = −5 dB were used5. In the non-convex region, that is

for high λ and q, the popt were obtained numerically using

global optimization heuristics.

Fig. 1(a) and Fig. 1(b) show the TC for the path loss and

Rayleigh fading model without fading between receiver and

external interference (GN ≡ 0). Comparing the two figures,

we observe that the TC for Rayleigh fading is generally lower

than for the path loss model which is consistent with findings

in the single channel case [3].

Furthermore we observe that the channel access strategies

behave qualitatively differently in the Rayleigh fading model

as compared to the path loss model: all strategies exhibit a non-

vanishing outage probability even for λ → 0. This is due to the

fact that outage still may occur, even for very low densities,

due to bad fades.

At low outage probabilities, and hence low λ, the optimal

strategy is to choose the best channel since this minimizes

overall outage probability. For the path loss model, this effect

is not observed: outage probability is unaffected by the quality

of good channels. Here, equally balancing internal and external

interference is optimal even when λ becomes arbitrarily small.

As a result, the optimal and the min-max strategy yield the

same solution at small q, while thresholding (with and without

min-max optimization) performs slightly worse because not

all “alive” channels are used. It should be noted that the

transmission capacity metric does not reveal the performance

limit of the latter strategies in the path loss model as it assumes

a fixed β. Adaptive modulation and coding could be employed

by the transmitters in order to benefit from good channel states.

In the intermediate outage probability region, where internal

and external interference are of the same order, we can see that

5Note that the assumption NSR ∼ Exp has been made ad hoc. However,
the exact external interference statistics do not affect the relative performances
of the strategies.
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(b) Rayleigh fading model

Fig. 1. Transmission capacity for various strategies

both the naı̈ve and the best channel strategy do not perform

well. Here, thresholding, and in particular thresholding with

min-max optimization, yield large performance gains over a

wide range and show near-optimality. For Rayleigh fading, its

performance is even better than the min-max solution.

In the high outage probability (and high node density)

region, the naı̈ve strategy quickly approaches the optimal TC

before falling off.

The TC for Rayleigh fading with GN ∼ Exp(1) is not

shown, but the qualitative characteristics of the channel access

strategies do not differ from those of Fig. 1(b). The TC

with GN ∼ Exp(1) is increased by approx. 8.5%: If fading

between receiver and external interferer is present, the outage

probability associated with the external interference is lower

than without fading. This can directly be seen by applying the

Jensen inequality, P[ g1g2 < a] = 1−E[e−g2a] ≤ 1− e−E[g2]a =

1− e−a. Thus, fading between receiver and external interferer

is beneficial. Knowledge about the type of this channel can

hence be exploited for the calculation of the optimal channel

access probabilities in order to increase TC.

Fig. 2(a) and 2(b) show the average outage proba-

bility q(λ) as well as the average standard deviation

of the weighted channel outage probabilities, i.e., σ =
std(p1q1(λ1), . . . , pMqM (λM )). For the threshold strategy,

only the active channels are considered. It can be observed that

σ is nearly constant over a wide range. At (undesirable) high

outage probabilities, σ increases fast for the optimal strategy

(the bend indicates the end of the convex region) and decreases

for the threshold and naı̈ve strategy. At low λ, σ is of the

same order than q, which may have a negative effect on QoS

guarantees. Note that for both the min-max and the threshold-

based min-max strategy σ = 0.

Finally, Fig. 3 shows the effect of varying transmission

distances r while optimizing the channel access probabilities

based on a target transmission distance ropt = 10. In both

cases of channel models, outage probability increases only

marginally and still remains lower than in the case of the

suboptimal solutions.
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Fig. 3. Influence of varying transmission distance for a fixed optimization
target ropt = 10.

C. Implications for protocol design

For protocol design, two conclusions can be drawn from the

analysis and comparison of strategies: First, adaptivity does

not result in a gain if the node density is high and hence

internal interference dominates. In such high density networks,

applying a naı̈ve strategy will then yield a close to optimal

result.

Second, if the node density is lower, adaptivity can indeed

help: In both the path loss and the Rayleigh model, a min-max

strategy, with optional thresholding to exclude bad channels,

is a good strategy with the benefit of constant QoS. This

is consistent with the interference avoidance mechanisms

currently implemented in IEEE 802.15.1.

V. CONCLUSION

We derived, for the convex low to medium outage region,

analytical TC expressions of the given FH-CDMA system for

both a Rayleigh fading and path loss model. Suboptimal strate-

gies were compared to those bounds in numerical simulations.
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Fig. 2. Outage probability and standard deviation as QoS for various strategies (Rayleigh model without fading of external interference)

Future work will focus on finding analytical expressions and

bounds for those suboptimal allocation strategies, in order

to create an analytical framework for FH-CDMA ad hoc

networks under external interference.

APPENDIX

A. Proof of Lemma 3

We examine the convexity of cpl =
∑

λmqpl(λm). Taking

the second partial derivative with respect to λm, we find

∂2cpl

∂λ2
m

=

{

2
π ξ

pl
me−

1
2
(ξpl

mλm)2(2 − λ2
m(ξpl

m)2) , i = j,

0 , i 6= j.
(16)

The Hessian matrix H of the objective function thus has

positive elements only for i = j, i ≥ L + 1, and is zeros

elsewhere. For H to be positive semi-definite and hence qm
to be convex, 0 < λm ≤

√
2

ξpl
m

must hold.

B. Proof of Lemma 5

Let fi(λi) := γi

(πr2λi)
α
2

and fj(λj) :=
γj

(πr2λj)
α
2

. Assume

we have an extremum of the objective function of (P1) in the

convex region with associated solution λ, . . . , λM . Consider

two λi and λj of the solution for which γi 6= 0, γj 6= 0. We

can write

k =
∑

λmqpl(λm, γm) = λiq
pl(fi(λi))+λjq

pl(fj(λj))+R,

(17)

where R are all terms independent of λi, λj . At the solution,

the constraint
∑

λm = λ has to be fulfilled, so we can set

λi + λj = λ′ and write (17) in terms of λi. Furthermore, we

know that at an extremum the partial derivative with respect

to λi has to be zero:

∂k

∂λi
= qpl(fi(λi)) +

α

2
(qpl)′(fj(λ

′ − λi))fj(λ
′ − λi)

−qpl(fj(λ
′ − λi))−

α

2
(qpl)′(fi(λi))fi(λi) = 0

(18)

fi(λi) = fj(λ
′ − λj) is a solution to this equation; we

assumed convexity (and strict convexity for λL+1, . . . , λM )

of the objective function, hence it is the only solution. Since

this is the case for arbitrary i and j, all fm(λm) are equal and

the Lemma follows.

C. Proof of Lemma 6

We examine the convexity of crl =
∑

λmqrl(λm). The

elements of the Hessian matrix H are given by

∂2crl

∂λi ∂λj
=

{

λ2∆ξrl
i e

−λi∆(2− λi∆) , i = j

0 , i 6= j.
(19)

The matrix H is positive semi-definite if all minors are non-

negative. From (19) it can be observed that H is a diagonal

matrix. Hence,

k
∏

m=1

λ2∆ξrl
me−λm∆(2− λm∆) ≥ 0 (20)

must hold for all k = 1, . . . ,M . Since all factors are non-

negative, (20) is true only if 2− λm∆ is non-negative for all

m = 1, . . . ,M .
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