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Abstract—Geolocation is an important topic nowadays. Among
other applications, geolocation can be used by frequency regu-
lators to monitor the time, frequency and space domain. In this
case of a passive geolocation system, Time Difference of Arrival
(TDOA) is often used. In this paper we analyze a geolocation
system based on a combination of TDOA and Received Signal
Strength Differences (RSSD). The benefit of combining the two
measurement types is shown using the Cramer Rao Lower Bound
(CRLB). The suitability of the Unscented Kalman Filter (UKF)
as an algorithm for the hybrid geolocation system is investigated.
Simulation results show that by using the UKF, the instability
of RSSD geolocation, that is often caused by bad geometry,
is compensated. The UKF nearly approaches the CRLB and
greatly outperforms the previously proposed least squares hybrid
solution. Using the UKF, the information about the signal power
can be definitely used to enhance the position estimation accuracy.

I. INTRODUCTION

Time Difference of Arrival (TDOA) offers a good solution
for passive geolocation systems that are often deployed for
security, emergency as well as regulatory reasons. TDOA
provides a reasonable accuracy in many scenarios and only
requires precise clocks. In the literature, many papers have
dealt with solving the hyperbolic equations of TDOA using
closed form or iterative algorithms [1], [2], [3]. Kalman Filters
offer another solution method due to their high robustness
against errors. Since the system of TDOA equations is nonlin-
ear, a special type of Kalman Filters can be used. While the
Extended Kalman Filter [4] linearizes the equations around an
estimate, the Unscented Kalman Filter (UKF) [5],[6] uses the
whole dynamics of the system without linearization on the so
called Sigma Points.

Among other error sources, TDOA suffers from low ac-
curacy because of bad synchronization among the sensors or
because of narrow bandwidths of the signals to be localized.
In that case, other measurements can be used to enhance the
location estimation accuracy. For a low cost passive sensor
network, Received Signal Strength Differences (RSSD) can
add information to the localization problem. Some algorithms
were introduced to solve the localization equation using the
RSSD measurements [7]. In [8] and [9], the least squares
solution to the hybrid system using both RSSD and TDOA
measurements is presented. The proposed method is based
on linearizing the system equations around an estimate and
solving the least squares solution. Unfortunately, the method
suffers from large errors in many scenarios.

This paper investigates the case of enhancing the position
estimate accuracy of a TDOA system using RSSD measure-
ments. The paper proposes the Unscented Klaman Filter as
a novel hybrid geolocation algorithm using both the signal
attenuation information and the TDOA measurements. The
paper is organized as follows. Section II presents the system
model of TDOA and RSSD. The benefits of using a hybrid
estimation system with both measurement types are shown by
the Cramer Rao Lower Bound (CRLB). Section III presents
the equations of the Unscented Kalman Filter using the hybrid
measurements. Section IV shows simulation results and com-
pares them to the previously proposed hybrid method. Section
V concludes the paper and suggests ideas for further work.

II. TDOA AND RSSD

In this section we analyze position estimation systems that
use TDOA, RSSD or both measurements combined. The
geometry behind the measurements as well as the best possible
accuracy of the system given by the CRLB are presented.
The localization system described in this paper is based on
N sensors in a two dimensional plane with known coordinates
[xi, yi], i = 1, ..., N which can record time stamped IQ data
in a certain bandwidth. The signal of interest is sent from a
transmitter at the unknown position [x, y].

A. Time Difference of Arrival

The received signals at two different sensors are cross-
correlated to obtain the time difference of arrival estimate
τ̂i,j . Measurement errors due to synchronization errors and
channel effects are modelled as added white gaussian noise.
The estimated distance difference between the transmitter and
sensors i and j is modelled by:

d̂i,j = di,j + ηj − ηi
= τ̂i,j · c, i, j = 1, ..., N, i 6= j

with ηi ∈ N (0, σ2
Ti

)

di,j = dj − di
di =

√
(xi − x)2 + (yi − y)2 (1)

where c is the propagation speed and di is the Euclidean
distance between the transmitter and sensor i. The terms ηi, ηj
describe the additive white noise. Solving equation (1) for
[x, y] resolves in the hyperbolic TDOA equation system. It is
usually referenced to one sensor, e.g., sensor one. Assuming



an unbiased estimate, the Cramer Rao Lower Bound (CRLB)
of the position estimate using TDOA measurements can be
calculated using the Fisher information matrix [1]:

FT = GTQ−1
T G (2)

with
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 (3)

and QT being the covariance matrix of the distance dif-
ference estimates d̂i,j . Estimators based on TDOA measure-
ments use the distance differences di,j rather than the time
differences. They either linearize the hyperbolic equations
around an estimate to calculate a least squares solution [2]
or they produce a closed form solution [1]. Extended and
Unscented Kalman Filters also form possible estimators for
that problem either by linearizing the nonlinear equations or
by approximating the system probability distribution.

B. Received Signal Strength Difference

In this method, the received signal power at sensor i is
modelled as:

P̂Ri = PT · d−γi · li (4)

where PT is the transmitted signal power, γ is a path loss
exponent and is assumed to be known to the receivers, and
di is the distance given in equation (1). li denotes log normal
fading, i.e.,

li = 10ni ni ∈ N (0, σ2
Pi

). (5)

Expressing equation (4) in dB and substracting the power
measurements of two sensors, we obtain the relation between
the received signal strength differences and the transmitter
position.

Ω̂i = 10 · log10(P̂Ri) = C − 10 · γ · log10(di) + ni

Ω̂i,k = Ω̂i − Ω̂k

= 10 · γ · log10(dk)− 10 · γ · log10(di) + ni − nk (6)

The Fisher information matrix of an unbiased estimator for
RSSD measurements was presented in [10]. Using

wk =

[
N∑
i=1

σ−2
Pi

]−1

· σ−2
Pk

(7)

ak =
x− xk
d2k

, bk =
y − yk
d2k

(8)

χ =

N∑
k=1

wkak ν =

N∑
k=1

wkbk (9)

ξ =

N∑
k=1

wka
2
k ψ =

N∑
k=1

wkb
2
k (10)

ρ =

N∑
k=1

wkakbk (11)

the Fisher information matrix is given by:

FP =

(
N∑
k=1

σ−2
Pk

)
·
(

10γ

ln(10)

)2

·
(
ξ − χ2 ρ− χ · ν
ρ− χ · ν ψ − ν2

)
(12)

Compared to the TDOA geometry based on hyerbolas,
solving the RSSD equations resolves in distance ratios di

dj
resembling circles with possible transmitter positions. The
geometry of the system is far more complex than that of
the TDOA system. Inaccuracies due to linearization around
an estimate cause much larger errors. Estimators for RSSD
geolocation systems were presented in [10] and [7].

C. Hybrid TDOA and RSSD

In this paper, we analyze the performance of a TDOA geolo-
cation system, which can benefit from the extra information
given by the RSSDs. Assuming that the noise terms of the
two measurement types are independent, the joint probability
density function can be expressed as the product of the two
probability density functions. The Fisher information matrix
of the hybrid system is the sum of the two matrices. In this
case,

FHybrid = FT + FP . (13)

The bound of the minimum mean Euclidean distance be-
tween the estimate and the true position is determined using
the trace of the inverse matrix. Fig. 1 and Fig. 2 show an
example of the Cramer Rao Lower Bound of the hybrid system
over σT and σP assuming equal standard deviations for all
sensors. The results can be compared to the case where only
TDOA or RSSD measurements are used. While the TDOA
error increases linearly with growing standard deviation, the
curve of the hybrid system grows smoother, the better the
RSSD measurements are. The bound can only get lower with
the additional information. Whenever the TDOA measure-
ments are too erroneous, for example because of a low signal
bandwidth, calculating the received signal strength differences
can greatly enhance the result. Furthermore, Fig. 2 shows
the instability of the RSSD geolocation system. Estimating
the transmitter position with the RSSD measurements only is
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Fig. 1. CRLB of the conventional TDOA approach compared to the Hybrid
approach
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Fig. 2. CRLB of the conventional RSSD approach compared to the Hybrid
approach

too inaccuracte and instable. Gathering both types of mea-
surements can contribute to a better estimation, especially in
cases where TDOA measurements are not sufficiently accurate.
Next, it is important to integrate the RSSD measurements in
a way that doesn’t decrease system accuracy.

III. THE UNSCENTED FILTER EQUATIONS USING TDOA
AND RSSD MEASUREMENTS

The Unscented Filter is a Kalman Filter for nonlinear
estimation. The filter approximates the probablity distribution
of the system at each time step k [11]. The system equations
of the Kalman Filter are generally given as:

x(k + 1) = f(x(k)) + u(k) (14)
z(k) = h(x(k)) + v(k) (15)

where x is the state vector, f is the state function and u is
the added system noise and where z is the measurement, h the
measurement function and v is the measurement noise. For the
sake of simplicity, we consider here stationary transmitters, so
that the state doesn’t change from one step to another and the
state function can be described as unity matrix.

The filter uses the Unscented Transformation on each state.
In this transformation, a cloud of points, the Sigma Points,
undergo the dynamics of the nonlinear system with the aim of
calculating the statistics of the random variable. The generated
Sigma Points should preserve the mean and the covariance
of the system and are therefor chosen deterministically. Many
methods were proposed for generating the Sigma Points. Here,
the method described in [6]. was used. The steps of the Kalman
Filter are presented next.

A. Initializing

The algorithm starts with an initial state vector consisting of
an estimate of the transmitter position and an initial estimate
of the state covariance:

x̂(0) = E[x(0)]

P̂(0) = E[(x− x̂(0))(x− x̂(0))T ] (16)

B. Generating Sigma Points

The next step consists of updating the state and covariance
according to the equation (15) and calculating the predicted
mean and covariance of the state using Sigma Points. Due
to the fact that we are assuming a stationary transmitter, the
predicted mean and covariance of the state are equal to the
state vector and the covariance matrix of the previous step.

x∗(k + 1) = x̂(k)

P∗(k + 1) = P̂(k) (17)

where (∗) stands for predicted parameters. At each step,
the Sigma Points x0,x1...x2Ndim+1 are generated around
the predicted state with the state dimension Ndim using the
predicted covariance.

x0 = x∗(k + 1)

xi = x0 +

(√
Ndim

1−W0
P∗(k + 1)

)
i

xi+Ndim
= x0 −

(√
Ndim

1−W0
P∗(k + 1)

)
i

Wi =
1−W0

2Ndim
i = 1, 2, ...Ndim (18)

where ()i denotes the ith row of the matrix square root of a
positive semidefinite matrix. W0,Wi are the according weights
of the points and W0 is a tuning parameter than can take any
value except for 1.



C. Predicting Measurements

The Sigma Points are projected through the measurement
function h, which means that each Sigma Point is regarded
as a transmitter position and the according TDOA and RSSD
measurements are calculated using the measurement equations
(1) and (6). The resulting measurement vector for Sigma Point
i has the following form:

zi = h(xi) =
[
d̂2,1, d̂3,1, ....d̂N−1,1, Ω̂2,1, Ω̂3,1, ...., Ω̂N−1,1

]T
(19)

The predicted measurement is the weighted sum of the
projected Sigma Points given as:

z∗(k + 1) =

2Ndim∑
i=0

Wizi (20)

D. Calculating Innovation and Cross Covariance Matrices

The predicted measurement covariance matrix and the cross
covariance matrix can be calculated by:

Pzz =

2Ndim∑
i=0

Wi[zi − z∗(k + 1)][zi − z∗(k + 1)]T + QHyb

(21)

Pxz =

2Ndim∑
i=0

Wi[xi − x∗(k + 1)][zi − z∗(k + 1)]T (22)

QHyb is the measurement covariance matrix that has the
following form:

QHyb =

(
QT 0
0 QP

)
(23)

where QT is the covariance matrix of the TDOA mea-
surements and QP is the covariance matrix of the RSSD
measurements.

E. Correcting and Updating

The filtering step consists of calculating the Kalman Gain K
and performing the measurement update equations with z(k+
1) as the observed measurement vector with the same elements
as in equation (19).

K(k + 1) = PxzP
−1
zz

x̂(k + 1) = x∗(k + 1) + K(k + 1)[z∗(k + 1)− z(k + 1)]

P̂(k + 1) = P∗(k + 1) + K(k + 1)PzzK
T (k + 1) (24)

IV. SIMULATION AND RESULTS

In this section we present the simulated scenarios and some
important results. For the geometry of the system, 6 Sensors
were symmetrically distributed around an origin point (here:
[300 300]) with a radius of 2000 m and the transmitter was
put in 10 different positions with the goal of covering both
good and bad geometry conditions. The simulated positions
can be seen in Fig. 3.
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Fig. 4. Contour graph of the RMSE over varying standard deviations

Fig. 4 shows the contour graph of the root mean square
error (RMSE) of the position estimate after 100 Kalman
filter steps. The results are plotted over growing standard
deviations of TDOA and RSSD measurements. It can be seen
that with decreasing TDOA accuracy, the additional RSSD
measurements are helpful. The more accurate the RSSDs are,
the better the result of the hybrid system compared to the
TDOA system. The figure also shows how the RMSE is
relatively insensitive to the RSSD accuracy. It is important to
mention here that the simulated geometry is not the best case
for RSSD measurements and that other scenarios can benefit
more from the hybrid system.

Fig. 5 compares the results of using the UKF as a hybrid
geolocation algorithm to the results of using the linearized
least squares algorithm presented in [8]. The standard de-
viation of the TDOAs was set to 150 m. The plot shows
the RMSE after 300 simulation steps over growing RSSD
measurement standard deviation. To be able to compare both
methods fairly, the RSSD measurements were averaged in
each step before undergoing the least squares algorithm. As
a reference, both the CRLB of the position estimate using
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RSSD and that using hybrid measurements are plotted. The
results of the least squares algorithm are greatly influenced
by the RSSD measurements and therefor grow accordingly
parallel to the CRLB, the UKF results are much smoother and
nearly approach the CRLB of the hybrid system, which means
that the UKF can benefit from the additional information
without adding error or inaccuracy due to linearizing the RSSD
equations.

Fig. 6 shows the results of the Unscented Kalman Filter over

300 filter steps. This plot shows how the filter converges to
the Cramer Rao Bound with each step. This proves again how
the UKF can optimally make use of the available additional
information given by the RSSDs.

V. SUMMARY AND FUTURE WORK

In this paper we presented a hybrid geolocation method
using Time Difference of Arrival and Received Signal Strength
Difference measurements. The idea behind the method is to
benefit from the information of the signal power in a passive
TDOA system while preventing additional accuracy loss. For
that reason, the Unscented Kalman Filter was presented as a
more reliable approach compared to the least squares hybrid
solution. The Kalman Filter approaches the Cramer Rao Lower
Bound of the hybrid system with each filter step. In future
work, we analyze the effect of unknown path loss exponents
and we investigate the idea of estimating the exponent as a
parameter in the Kalman Filter.
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