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Abstract—This paper presents a weighted least squares algo-
rithm for passive localization using Time Difference of Arrival
in multipath scenarios. The algorithm is based on the direct
or one-step approach for position estimation using distributed
sensors and requires no knowledge about the number of received
multipaths, the transmitted signal or the transmit time. Delayed
signal paths arriving due to multipath propagation are considered
and treated as interference to the localization problem. Simu-
lation results show a better and more robust performance of
the algorithm, compared to conventional two-step localization
algorithms.

I. INTRODUCTION

Passive localization describes the problem of estimating the
position of a signal source without knowledge of the trans-
mitted signal or the transmit time. This can be employed for
example by frequency regulators aiming at finding unlicensed
transmitters or for a variety of security and emergency sce-
narios. Depending on the available hardware, the information
about the transmitter position can be estimated passively by
measuring the time difference of arrival, the angle of arrival
or the received signal strength difference.

Time difference of arrival (TDoA) offers a good compro-
mise between low cost hardware and reliable estimates. In
[1], a low cost TDoA system was presented. Based on GPS-
synchronized software defined radios, the presented setup is
able to deliver synchronized IQ-data received by distributed
sensors with known positions.

The challenges facing TDoA systems can be categorized
in: (i) additive white Gaussian noise (AWGN), (ii) multi-
path propagation, (iii) non-line-of-sight (NLOS) propagation.
While it is true that NLOS is part of the multipath scenario,
nevertheless, the two problems are modeled and analyzed
separately in TDoA systems. For the simple case of AWGN,
the estimation problem can be solved by calculating the cross-
correlation between pairs of received signals and obtaining
the TDoA measurement by detecting the correlation peak [2].
The estimated TDoAs are fed to a positioning algorithm, for
example least squares algorithms presented in [3] and [4]. For
the AWGN scenario, this two-step method results in accurate
and reliable estimates.

A sensor receiving a multipath propagated signal observes
multiple delayed versions of the signal in its observation win-
dow. A simple cross-correlation of the observed signal would
result in multiple correlation peaks. The difficulty in estimating
the first arrival path from this cross-correlation lies in the fact
that the strongest peak doesn’t necessarily represent the direct
path. On the other hand, peaks can overlap in an unresolvable

way where the individual peak is no more distinct. The
obtained TDoA estimates tend to be biased in these scenarios.
In the literature, different methods aiming at estimating the
time delays resulting from multipath propagation are based on
maximizing the likelihood function of the presented problem
as in [5] and [6] or by using super-resolution methods as in
[7]. These algorithms assume a known number of received
paths and perform well whenever the multipath components
are well separated in time. This assumption holds whenever the
multipath delays are large compared to the signal correlation
peak, which depends on the signal bandwidth as well as the
channel. A narrowband signal propagating through an urban
channel will not result in resolvable correlation peaks.

Assuming that the estimated TDoAs are biased due to the
absence of a strong first arrival path of the signal, [8] and [9]
presented algorithms that aim at identifying and mitigating
the NLOS error by weighting the estimated TDoAs according
to their reliability or by eliminating the identified NLOS
TDoA estimates. These algorithms perform well whenever
there are enough line-of-sight (LOS) TDoA estimates. As
a consequence, there is still a need for passive localization
methods using TDoA in multipath scenarios.

The mentioned methods are all based on the two-step
estimation procedure, the first step estimating the TDoAs
from the received signals and the second step estimating the
position from the obtained TDoAs. Alternatively, so called
one-step methods have also been presented as a good and
reliable approach to the problem. In the one-step methods,
a position is estimated directly from the received signals. The
algorithms are based on a grid search, which is the reason why,
in good conditions, the two-step methods are preferred. In [10],
Weiss presented a direct positioning method for narrowband
transmitters. The results showed a better performance of his
method than usual one-step methods, especially at low SNR.
In [11], the one-step maximum likelihood estimator for passive
localization was presented for the case of known and unknown
transmitted signal. In this paper we exploit the advantage of
the one-step least squares solution for the complex scenario of
passive localization in multipath channels and present a novel
algorithm based on it. We show how, by preprocessing the
received multipath signals, we can achieve better positioning
results than conventional two-step approaches.

The paper is organized as follows. Section II introduces the
system model as well as the least squares solution. Section
III describes the developed algorithm. Section IV shows and
analyzes simulation results. Section V concludes the paper.



II. SYSTEM MODEL

The passive localization system consists of M distributed
sensors with positions xi = [xi, yi]

T i = 1, 2, ...M and an
unknown transmitter at coordinates x = [xT , yT ]T . First, we
will present the AWGN scenario and its least squares solution.
The received and sampled signal at sensor i can be modeled
as:

ri(n) = αis(n− t0 − τi) + ηi(n), n = 0, 1, ...,K − 1 (1)

whereas s(n) is the unknown transmitted signal, t0 is the
transmit time, τi is the propagation delay and ηi is a white
Gaussian random noise at sensor i. The propagation delays
are functions of the emitter position given as:

τi(x) = t0 +

√
(xT − xi)2 + (yT − yi)2

c
(2)

with c being the propagation speed. To be able to separate
the signal from the parameters that need to be estimated, the
sampled signal is transformed to the frequency domain and
the least squares solution is given by minimizing the following
cost function [10]:

Q(x) =

M∑
i=1

K−1∑
k=0

|Ri(k)− αiS(k)e(t0+τi(x))wk |2 (3)

whereas Ri(k) and S(k) are the Fourier transforms of
ri(n) and s(n) and wk = −j2πk

K . The passive localization
scenario assumes unknown transmitted signal and transmit
time, resulting in ambiguity of this solution as it was shown
in [11]. Using one of the received signals as reference signal
resolves the ambiguity. Without loss of generality, we define
signal r1(n) as our reference signal and rewrite the least
squares solution as follows:

Q̄(x) =

M∑
i=2

K−1∑
k=0

|Ri(k)− βiR1(k)e∆τi(x)wk |2 (4)

whereas: βi = αi

α1
and ∆τi = τi − τ1. Minimizing the least

squares equation yields for βi:

βi = (Φi(x)H ·Φi(x))−1Φi(x)H ·Ri (5)

with

Ri = [Ri(0), Ri(1), ...Ri(K − 1)]T (6)

Φi(x) = [R1(0), R1(1)e∆τi(x)w1 , .., R1(K − 1)e∆τi(x)wK−1 ]T

and eliminating all terms that are independent of x, the least
squares solution is:

x̂LS = arg max
x

M∑
i=2

1

||Φi(x)||2
|RH

i Φi(x)|2 (7)

Next, we extend this model to the multipath propagation
scenario. The received signals can then be modeled as:

ri(n) =

Pi∑
p=1

αi,ps(n− t0 − τi,p) + ηi(n), n = 0, 1, ...K − 1

(8)
wheras Pi is the number of received paths of sensor i, τi,p

is the delay corresponding to path p of sensor i and ηi is
the random noise of sensor i. The multipath parameters α
and τ are assumed constant throughout the observation length
K. The reference signal R1(k) is assumed to have one path
P1 = 1. This assumption can be held in a system where the
reference sensor is chosen regularly based on this property, for
example by choosing the signal with the narrowest correlation
peak and with the least number of additional peaks. Expressing
the signals in the frequency domain, the least squares solution
can be obtained by minimizing the following function:

Q̄(x) =

M∑
i=2

K−1∑
k=0

|Ri(k)− βi,1R1(k)e∆τi(x)wk − I(k)|2 (9)

with βi,p =
αi,p

α1,1
and ∆τi,p = τi,p − τ1,1 and I(k) =∑Pi

p=2 βi,pR1(k)e∆τi,pwk being the unknown interference re-
sulting from multipath propagation. The information about the
transmitter position lies only in the delay of the first arrival
path following:

∆τi,1 = (τi,1(x)− t0)− (τ1,1(x)− t0) (10)

=

√
(xT − xi)2 + (yT − yi)2 −

√
(xT − x1)2 + (yT − y1)2

c

III. NOVEL ALGORITHM

The proposed algorithm is based on equations (7) and (9).
It consists of four main steps that will be described in detail
later in this section:

1) If possible, estimate an initial position using the first
identified peaks from cross-correlated signal pairs and
applying the least squares positioning algorithm pre-
sented in [3].

2) Eliminate the interference term I(k).
3) Calculate weights for sensors 2, ...,M depending on the

outcome of step 2.
4) Use the interference-eliminated signals as well as the

calculated weights to search for the weighted least
squares solution according to (7). If step 1 was suc-
cessful, the grid search area is reduced to a smaller
area around the initially estimated position. If not, the
complete grid area is used.

In the first step, an initial position is calculated. For the
time delay estimation, the cross-correlations of the different
received signals with the reference signal are calculated and
the first identified peak above a threshold γ is interpolated
and estimated as the TDoA. It is then fed to the method
presented in [3]. The goal of this step is to reduce computa-
tional complexity if possible by limiting the grid search area.
Alternatively, a low grid resolution can be chosen, resulting



in higher quantization errors of the obtained position estimate.
Due to matrix singularities resulting from large errors or from
unfavorable geometries, the least squares algorithm in [3]
sometimes fails to deliver an estimate.

In the second step, the cross-correlation between the refer-
ence sensor and all other sensors is calculated and peaks above
a defined threshold γ are identified as received signal paths.
Since we’re assuming a single path at the reference sensor,
the first arrived path corresponds to the position dependent
path and later paths are identified as interference and are
gradually subtracted from the signal until only one correlation
peak above the threshold remains. For each identified path,
the TDoA is estimated and the gain is calculated according to
eq. (5). With the estimated delay and gain ∆τ̂ , β̂, the path is
subtracted as:

R̄i(k) = Ri(k)− β̂R1(k)e−∆τ̂wk . (11)

Figures 1 and 2 show an example of a signal with three paths
before and after step 2. Signal R̄i represents the interference-
free signal after step 2.
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Fig. 1. Multipath propagated signal
with 3 incoming path
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Fig. 2. Multipath propagated signal
after undergoing step 1

If step 2 performs well, then cross-correlating the
interference-eliminated signals with the reference signal would
result in one high correlation peak. Therefor, the weights are
calculated as the correlation coefficient of the highest peak
after applying step 1. In the example in fig. 2, the weight
would be 0.85.

The last step estimates the transmitter position by applying
the algorithm:

x̂WLS = arg max
x

M∑
i=2

wi
||Φi||2

|R̄H
i Φi(x)|2 (12)

either on a large grid area or on a reduced grid area using
the initial estimate from step 1.

The goal of the novel algorithm is to be able to apply
the accurate one-step least squares algorithm to the com-
plex scenario of multipath propagation, without undergoing
a multidimensional search for the multipath parameters. With
the second step of the algorithm being a rather simple step,
the goal is to reduce the effect of remaining interference
by applying the one-step solution instead of immediately
introducing a bias to TDoAs through two-step solutions. This
way, a simple yet robust algorithm can emerge as an answer
for passive localization in multipath scenarios.

IV. SIMULATION RESULTS

In this section, we show the performance of the position
estimation using the presented algorithm. We compare results
of the following algorithms:

• (i) 2S: A two-step least squares algorithm using the
received signals (i.e., the initial estimate from step 1).

• (ii) PP-2S: A two-step algorithm using the pre-processed
signals. After applying step 2 of the presented algorithm,
the position is estimated by executing the same steps as
in (i).

• (iii) PP-1S: The one-step weighted least squares algo-
rithm using interference-free signals and, if possible, an
initial estimate.

For the simulation, a geometrical setup of five sensors
distributed on a circle with a radius of 700m was chosen.
The position of the transmitter was chosen randomly for each
simulation run within a 2000m×2000m plane. The generated
transmit signal consisted of 300 symbols of band limited white
Gaussian noise with a bandwidth of 1 MHz. The number of
received paths per sensor as well as the parameters α and τ
for each path were chosen from uniform distributions with
α ∈ [0.05, 1] and τ ∈ [0.1, 20]. The maximum number of
paths to was set to pmax. For the minimum separation between
delays, 0.1 of the symbol duration was chosen, allowing for
overlapping paths scenarios to occur.

The simulation parameters shown in the results are:

• SNR: This is defined as the power of the received first
path over the power of the received white Gaussian noise.

• SIR: This is defined as the power of the received first
path over the power of the other received signal paths
which are defined here as interference.

• pmax: The maximum number of paths to randomly chose
from for each sensor.

• γ: The threshold, above which a correlation peak is
identified as incoming signal path.

The performance criterion chosen for the results is the
adjusted cumulative distribution function (CDF). It differs
from the true CDF by not necessarily converging to 1. This
happens whenever the algorithms fail to estimate a position.
Additionally, a table is given for each plot with the failure
rates of the algorithms.

A. Performance at different Signal to Interference Ratios

Fig. 3 shows the cumulative distribution function of the
position estimation error for an SIR of 10 dB, 0 dB and -
5 dB at an SNR of 10 dB. Table I shows the according
failure rates of the two-steps algorithms due to large errors
or bad geometries. The one-step algorithm, however, always
results in a position estimate. At high SIR, the algorithms
perform equally well. The lower the SIR, the bigger the
advantage of the one-step algorithm, taking the failure rates
into consideration. At equal power of signal and interference,
the presented algorithm results in position estimates with 85%
probability of an error below 200 m.
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Fig. 3. Estimation error cumulative distribution function for SNR = 10dB
and SIR = 10dB, SIR = 0dB, SIR = −5dB . The maximum number of
received paths is pmax = 10

SIR = 10dB SIR = 0dB SIR = −5dB
2S 1.6% 15% 33%

PP-2S 0.95% 7.5% 8%

TABLE I
FAILURE RATES OF THE LOCALIZATION ALGORITHM AT DIFFERENT SIR

VALUES

B. Performance at different Signal to Noise Ratios

Fig. 4 shows the cumulative distribution function for signal
to noise ratios of 0 dB, 10 dB and 20 dB. Table II shows the
failure rates of the two-steps algorithms. Again, the benefit of
the new algorithm is higher for lower SNR. At SNR of 10 dB
or 20 dB, 63% of the estimates obtained from the presented
algorithm have an error below 300 m even for a signal to
interference ratio of -3 dB. Even though the two-step algorithm
shows better curves, it has very high failure rates of up to
38%. For an SNR of 0 dB, 50% of the estimates using the
novel algorithm have an error below 300 m, while 50% of the
estimates using the one-step algorithm have an error below
600 m, if we consider all results of the algorithm including
the failures as 100%.
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Fig. 4. Estimation error cumulative distribution function for SIR = −3dB
and SNR = 0dB, SNR = 10dB, SNR = 20dB. The maximum number
of received paths is pmax = 10

SNR = 0dB SNR = 10dB SNR = 20dB
2S 38% 24% 23%

PP-2S 8% 9% 9%

TABLE II
FAILURE RATES OF THE LOCALIZATION ALGORITHM AT DIFFERENT SNR

VALUES

C. Performance at different Maximum Number of Paths

Fig. 5 shows the performance of the algorithms for different
numbers of pmax. For higher pmax, the algorithms perform
worse even at equal SIR. This is because the different paths
are harder to resolve for a higher number of incoming paths.
Again, the novel algorithm performs best considering the
failure rates of the two other algorithms given in table III.
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Fig. 5. Estimation error cumulative distribution function for SIR of -3 dB
and an SNR of 10 dB over different pmax

pmax = 2 pmax = 6 pmax = 12
2S 14% 23% 24%

PP-2S 6% 9% 9%

TABLE III
FAILURE RATES OF THE LOCALIZATION ALGORITHM AT DIFFERENT pmax

D. Performance at different Thresholds

Fig. 6 shows how the choice of the threshold affects the
performance of the algorithms. Is γ chosen too small, then
correlation peaks appearing due to noise will be identified
as received signal paths. Is γ chosen too high, then some
interference paths will remain unrecognized and will not be
eliminated. The choice of γ depends on the SNR. For a wide
range of SNRs, a threshold of 0.3 performed best.

The choice of the threshold affects all algorithms because,
depending on γ, the first path is identified and estimated as the
TDoA. That’s why the failure rates are so high for γ = 0.1.
The two-steps algorithms identify a wrong peak as the TDoA
and the algorithm fails, whereas the one-step algorithm is far
more robust against the wrong choice of γ. At γ = 0.5, much
of the interference won’t be neither identified nor eliminated.
In this case, the one-step algorithm performs worse than for



γ = 0.3, which shows the importance of the interference-
elimination step for this algorithm.
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Fig. 6. Estimation error cumulative distribution function for SIR = −3dB
and three different thresholds. The maximum number of received paths is
pmax = 10

γ = 0.1 γ = 0.3 γ = 0.5
2S 96% 24% 44%

PP-2S 70% 9% 10%

TABLE IV
FAILURE RATES OF THE LOCALIZATION ALGORITHM AT DIFFERENT

THRESHOLDS

V. CONCLUSION

This paper presented a fully passive position estimation
algorithm using distributed sensors in multipath scenarios.
The algorithm doesn’t assume knowledge of the number of
received signal paths, the signal transmit time or the transmit-
ted signal. The combination of the rather simple interference
elimination and the mathematically reliable one-step least
squares solution makes it robust against errors caused by mul-
tipath propagation. Remaining interference due to unresolvable
multipath is not directly influencing the estimate by resulting

in a TDoA bias. Simulation results confirmed that by showing
how the algorithm is less sensitive to unresolvable or unrecog-
nized remaining interference in the signals. Additionally, the
algorithm presents a reliable approach due to its zero failure
rate. All in all, the presented algorithm offers a solution which
is robust against high noise power, high interference power,
a high number of interference paths or a bad choice of the
threshold.
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