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Outline
• Deep	learning	machines	– successes	and	open	questions

• Statistical	mechanics	of	learning	from	examples	and	why	entropy	in	function-
space	matters	

• Related	set-ups:	Continuous/discrete	weights,	dense/sparse	networks,	
correlated	weights,	convolutional	neural	networks,	sensitivity	to	input	
perturbations,	binarization/sparsification and	finite-size	effects

• Typical	functions	computed	by	DLM	and	recurrent	networks	

• Summary	and	future	work
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Deep	Learning	Engineering	Successes

• Computer	vision	

• Speech	recognition

• Go,	ATARI

• Composing	music,	artwork

• Generating	fake	videos	

It	is	unclear:

Which	functions	do	they	represent?	How	to	optimize	configurations?		How	

to	improve	training?		What	do	internal	representations	represent?



Deep	Learning	Machines
Implement an input-output mapping

𝒚 = 𝑓𝒘 𝒙 ,
where the parameters 𝒘 are to be estimated
based on the training data 𝝃(, 𝜎( (*+,,,…. to
perform a desired mapping.
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We	want	to	understand:
(i) Their	generalization	ability even	with	numerous	parameters	
(ii) Nature	of	the	internal	representations
(iii) Which	problems	are	easier/more	difficult	to	solve?



Macroscopic	Analysis	–Typical	Behavior
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• Mapped to disordered systems of infinite dimension

• Typical behavior (in contrast to worse-case) of storage capacity and

generalization curves (mostly single-layer)

• Technically quite involved (single or two-layer systems)

• Two-layer analysis – in the online setting only

• Input data structure and internal representations are rarely addressed
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Teacher-student	Scenario	for	DLM?

6

𝝃+, 𝜎+ , 𝝃,, 𝜎, … , 𝝃(, 𝜎( , … , 𝝃/, 𝜎/

Difficulties:

• Constraints	imposed	by	the	examples	
(input-output	pairs)	on	the	hidden	
units	are	complex	–recursive	
nonlinear	mapping.

• Permutation,	reflection	and	other	
symmetries/invariances	of	hidden	
units,	no	simple	relation	between	
teacher-student	overlap	and	
generalization	error.

Teacher Student



Function	Space,	Error	and	Entropy	
• We	would	like	to	approximate	a	reference/target	function	𝑓𝒘0 ,	as	closely	as	
possible	from	data.
• Given	noisy	data,	sub-optimal	training	methods	- more	relevant	to	find	
good	approximations.	How	many	such	functions	exist?
• Conjecture	- The	entropy	(log-volume)	of	functions	at	distance-𝜀 away	from	
𝑓𝒘0 indicates	how	easy	it	is	to	obtain	them.

7

Baldassi et	al	PRL	2015,	
PNAS	2016,	JSM	2020



8

We	map	the	DLM	to	disordered spin systems with	
discrete	dynamics,	�̂�45 , 𝑠45 ∈ {1, −1},	activation	function	is	
sign	function	𝑠𝑔𝑛(𝑥).

𝑙 ⟺ 		𝑡
𝒘5 		⟺ 𝒘(𝑡)

Reference	function	𝑓𝒘0 Perturbed	function	𝑓𝒘

Investigate	the	function	
sensitivity	under	small	
perturbations

𝒘5 = Perturb(𝒘05)The	framework	can	be	generalized	to	real	variables	and	other	
activation	functions.

?

=

Exploring	Function	Space	in	DLM

Poole et al., NIPS 2016 - Mean field theory to study input sensitivity and expressivity



DLM	as	a	Stochastic	Dynamical	System
• The layer evolution of two coupled DLMs:

𝑃 𝒔M5 𝒘05, 𝒔M5N+, 𝛽 = ∏ QRS TÛV
WXYV
W(𝒘0W,𝒔MWZ[)

, \]^_ TÛV
WXYV
W(𝒘0W,𝒔MWZ[)

�
4 , 𝑃 𝒔5 𝒘5, 𝒔5N+, 𝛽 = ⋯,

ℎc45 𝒘05, 𝒔M5N+ = ∑ 𝑤04f5 	�̂�f5N+/ 𝑁��
f , 𝛽 is the inverse-temperature quantifying the noise level;

deterministic rule in the zero-noise limit 𝛽 → ∞.

• Any observable is given by

𝑂 :=m 𝑂 ⋅ 𝑃 𝒔Mo 𝛿𝒔Mq,𝒔qr 𝑃 𝒔M5 𝒘05, 𝒔M5N+, 𝛽 ⋅ 𝑃(𝒔5|𝒘5, 𝒔5N+, 𝛽)
�

5

�

{𝒔MW,𝒔W}
,

summed	over	all	the	trajectories subject	to	the	path	measure.

• For discrete spins, the overlap between activities of the two systems is of interest

𝑞5 𝒘0,𝒘, 𝛽 =
1
𝑁
m〈�̂�45𝑠45〉
�
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Generating	Functional	Analysis

• Generating functional (characteristic function)

Γ 𝝍Y,𝝍 ≔ exp −𝑖m 𝜓c45�̂�45 + 𝜓45𝑠45
�

5,4
,

moments	such	as	magnetization	 �̂�45 and	overlap	 �̂�45𝑠45 can	be	obtained	by	
differentiating	Γ 𝝍Y,𝝍 ; angled	brackets	– average	over	all	paths.

• Interested in the typical behavior of an ensemble of networks	𝒘0 ∼ 𝑃 𝒘0 ,
overbar – quenched average

Γ 𝝍Y,𝝍 ≔m Γ 𝝍Y,𝝍 𝑃 𝒘0 	𝑃 𝒘
�

𝒘0W,𝒘W	

= ∫∏ ��W��W

,�/�
�
5 𝑒��[𝒒,𝑸]�

� ≈ 𝑒�� 𝒒∗,𝑸∗ , in	the	limit	𝑁 → ∞,

Represented	by	macroscopic	order	parameters;	the	saddle	point	𝒒∗, 𝑸∗ 	=
extr𝒒,𝑸𝜳 𝒒,𝑸 satisfies	certain	self-consistent	mean-field equation.
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…

𝑠45

𝑤4f5

𝑠f5N+

𝑠5

𝑚5N+, 𝑞5N+



Function	Error	and	Entropy	
• For	discrete	spins,	the	overlap between	internal	representations	the	two	
systems	is	of	interest	𝑞5 𝒘0,𝒘, 𝛽 = +

�
∑ 〈�̂�45𝑠45〉�
4 ,	calculated	using	

Generating	Functional	Analysis
• Function error is defined as the expected Hamming distance of output
layers between 𝑓𝒘0 and 𝑓𝒘

𝜀 ≔ +
,�
∑ �̂�4� − 𝑠4�
�
4*+ = +

,
1 − 𝑞� ,

which	provides	a	distance	measure	between	𝑓𝒘0 and	𝑓𝒘.
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Fully-connected	Networks	– Continuous/Binary	Weights

Continuous	weights:

Typical	overlaps:

Binary	weights:

Consider	fully-connected	networks,	with	𝑃 𝒘045 = ∏ 𝑃(𝑤04f5 )�
f

Perturbation	
strength	at	layer	𝑙

𝜀 = 0.2

𝜀 = 0.1

𝒘0

[B.	Poole	et	al.,NIPS 2016]

	𝑤04f5 ∼ 𝒩(0, 𝜎,) 𝑃 𝑤04f5 =
1
2
𝛿 𝑤04f5 − 1 +

1
2
𝛿 𝑤04f5 + 1

𝑤4f5 = 1 − 𝜂5 ,� 𝑤04f5 + 𝜂5𝛿𝑤4f5 𝑃 𝑤4f5 = 1 − 𝑝5 𝛿 𝑤4f5 − 𝑤04f5 + 𝑝5𝛿 𝑤4f5 + 𝑤04f5

𝑞5 =
2
𝜋
sinN+( 1 − 𝜂5 ,� 𝑞5N+) 𝑞5 =

2
𝜋
sinN+((1 − 2𝑝5)𝑞5N+)
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Entropy	of	𝑓𝒘:

The	distance-𝜀 surface	of	𝑓𝒘 with	volume	Ω 𝜂5 = exp𝑁/ 𝑆\]¥	 𝜂5 ,	is	
exponentially dominated	by	the	maximum-entropy	solutions	when	𝑁/ → ∞:

𝜂∗5 = argmax
§W

𝑆\]¥	({𝜂5}) , 	s. t. 		𝑞� 𝜂5 = 1 − 2𝜀

𝑆\]¥ =
1
𝐿
m log 𝜂5

�

5
𝑆©ª¥ =

1
𝐿
m −𝑝5 log 𝑝5 − 1 − 𝑝5 log(1 − 𝑝5)

�
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Earlier	Layers	Converge	First	When	Decreasing	𝜺

13M.	Raghu	et	al,	ICML 2017

Continuous	
weights

Binary	
weights

𝒘+
𝒘,
𝒘¬



Approximate	Generalization	Curve
(dense	DLM	with	continuous	weights)

Annealed	theory	of	learning

A.	Engle	and	C.	Van	den	Broeck,	2001

Relevant	in	small	𝜀 (large	𝛼)	limit.

Ω® 𝜀 = Ω¯]¯ 𝜂∗5 , 𝜀 = 	Ωo 𝜀 1 − 𝜀 .

𝑃 = 𝛼𝐿𝑁, 𝜀∗ 𝛼 = argmax°Ω® 𝜀
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Weight	disconnection Weight	discretization

Deep	ReLU networks	with	random weights	are	robust	to	disconnecting	or	binarizing	weights.

…

𝑤04f5

…

𝑤04f5

𝑤4f5 = sgn(𝑤04f5 )⟺ ⟺

𝜃5 = sinN+ 𝑝5� 𝜃5 = cosN+ 2/𝜋� ≈ 37° [A.	Anderson,et al.,ICLR 2018]

Perturbations	Through	Dilution/Discretization	



Sign	vs	ReLU - Input	Sensitivity
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[B.	Poole	et	al.,NIPS 2016]

𝒘5 	= 𝒘05

sensitivity	under	input	
perturbations

𝒔o = Perturb(𝒔Mo)

?

Deep	ReLU networks	with	random weights	compute	simple	functions.



Interim	Summary	– Other	Setups	we	Investigated
• Sparse	architectures	- as	before,	where	each	node	is	randomly connected	to	
𝑘 units	in	the	previous	layer	and	𝑤04f5 = 1.

• Weight	dilution/discretization– ReLU vs	sign

• Continuous	variable	values	and	ReLU activation	function	𝜙 𝑥 = max 0, 𝑥 .

• Convolutional	neural	networks	

• Correlated	weights

• Input	sensitivity	– ReLU vs	sign



Space	of	Functions	Generated	by	Sparse	DLM	

18



Boolean	Input-Output	Relation	in	DLM	
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Functions	Generated	by	Layered	Networks
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The	Framework	– Probability	of	Functions
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GF	Analysis	– Saddle	Point	Equations
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Layered	vs	Recurrent	Networks
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Layered	vs	Recurrent	- Functions
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Numerical	Results
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Entropy	In	Sparse	Layered	Networks
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Entropy	of	Functions	– ReLU vs	sign
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(a) (b)(a)



Current	and	Future	Work
• We	proposed	a	framework	for	analyzing	functions	computed	by	random	DLM.
• Show	equivalence	between	the	space	of	functions	generated	by	random	DLM	
and	recurrent	architectures.
• Possible	computation	with	a	less	parameters	by	weight/connection	sharing	
(may	sacrifice	accuracy)
• Depending	on	gate/activation	functions,	simpler	or	more	complex	functions	
are	being	represented	as	layer	depth	increases.

Future work:
• The	role	of	over-parametrization	in	function	landscape,	error	and	
generalization.
• Exploring	the	effect	of	non-trivially	correlated	inputs,	e.g.	from	a	generative	
model,	and	go	beyond	the	random	reference	functions.
• Optimizing	variable	hidden	layer	size.
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