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This work started with a simple observation . . .

Deep Learning [LeCun et al., 2015] Deep Q-Learning [Mnih et al., 2015] ResNet [He et al., 2015]

· · ·

Multi-layer neural networks: impressive performance, countless applications

[Du and Lowery, 2010] [Nakashima et al., 2017]

Split-step methods for solving the propagation equation in fiber-optics
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Agenda

In this talk, we . . .

1. show that multi-layer neural networks and the split-step method have the
same functional form: both alternate linear and pointwise nonlinear steps

2. propose a physics-based machine-learning approach based on
parameterizing the split-step method (no black-box neural networks)

3. revisit hardware-efficient nonlinear equalization via learned digital
backpropagation

3 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Outline

1. Machine Learning and Neural Networks for Communications

2. Physics-Based Machine Learning for Fiber-Optic Communications

3. Learned Digital Backpropagation

4. Conclusions

4 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Outline

1. Machine Learning and Neural Networks for Communications

2. Physics-Based Machine Learning for Fiber-Optic Communications

3. Learned Digital Backpropagation

4. Conclusions

5 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)

parameters
to be optimized/learned

b
b
b

b
b
b

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

28 × 28 pixels =⇒ n = 784

6 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)
b
b
b

b
b
b

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

How to choose fθ(y)? Deep feed-forward neural networks

W
(1)

b(1)

.

.

.

activation function

W
(2)

b(2)

.

.

.

bbb
W

(ℓ)

b(ℓ)

.

.

.

b
b

b

b
b

b
b
b

b
b
b

b

bb b

bb b

bb b

bb b

equivalent graph representation

6 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)
b
b
b

b
b
b

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

How to optimize θ = {W (1), . . . , W (ℓ), b(1), . . . , b(ℓ)}?

6 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Supervised Learning

y1

yn

z1

zm

fθ(y)
b
b
b

b
b
b

0
1
0
0
0
0
0
0
0
0

x

0.01
0.92
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.01

z

bbb

handwritten digit recognition (MNIST: 70,000 images)

How to optimize θ = {W (1), . . . , W (ℓ), b(1), . . . , b(ℓ)}?

Given a data set D = {(y(i), x(i))}N
i=1, where y(i) are model inputs and x(i)

are labels, we iteratively minimize

1

|Bk|

∑

(y,x)∈Bk

L(fθ(y), x) , g(θ) using θk+1 = θk − λ∇θg(θk)

• Bk ⊂ D and |Bk| is called the batch (or minibatch) size

• Typical loss function: mean squared error L(a, b) = ‖a − b‖2 (regression)

• λ is called the step size or learning rate
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• Conventional: handcrafted DSP blocks based on mathematical modeling

• Model deficiency: no good model might be available
• Algorithm deficiency: infeasible algorithms may require simplifications

• Use function approximators and learn parameter configurations θ from data

[Shen and Lau, 2011], Fiber nonlinearity compensation using extreme learning machine for DSP-based . . . , (OECC)
[Giacoumidis et al., 2015], Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based . . . , (Opt. Lett.)

. . .
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• Conventional: handcrafted DSP blocks based on mathematical modeling

• Model deficiency: no good model might be available
• Algorithm deficiency: infeasible algorithms may require simplifications

• Use function approximators and learn parameter configurations θ from data

• Joint transmitter–receiver learning via autoencoder [O’Shea and Hoydis, 2017]

[Karanov et al., 2018], End-to-end deep learning of optical fiber communications (J. Lightw. Technol.)
[Li et al., 2018], Achievable information rates for nonlinear fiber communication via end-to-end autoencoder learning, (ECOC)

. . .
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• Conventional: handcrafted DSP blocks based on mathematical modeling

• Model deficiency: no good model might be available
• Algorithm deficiency: infeasible algorithms may require simplifications

• Use function approximators and learn parameter configurations θ from data

• Joint transmitter–receiver learning via autoencoder [O’Shea and Hoydis, 2017]

• Surrogate channel models for gradient-based TX training

[O’Shea et al., 2018], Approximating the void: Learning stochastic channel models from observation with variational GANs, (arXiv)
[Ye et al., 2018], Channel agnostic end-to-end learning based communication systems with conditional GAN, (arXiv)

. . .
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Physical-Layer Design: Conventional vs. Machine Learning

communication
channel

data in

0 1 1 0 · · ·

parameterized TX

data out

0 1 1 0 · · ·

parameterized RX

surrogate channel

Using (deep) neural networks for Tθ, Rθ, Cθ? Possible, but . . .

• How to choose the network architecture (#layers, activation function)? ✗

• How to limit the number of parameters (complexity)? ✗

• How to interpret the solutions? Any insight gained? ✗

• . . .

Our contribution: designing “neural-network-like” machine-learning models by
exploiting the underlying physics of the propagation.
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Fiber-Optic Communications

Fiber-optic systems enable data traffic over very long distances connecting
cities, countries, and continents.

• Dispersion: different wavelengths travel at different speeds (linear)
• Kerr effect: refractive index changes with signal intensity (nonlinear)
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Deep Learning [LeCun et al., 2015] Deep Q-Learning [Mnih et al., 2015] ResNet [He et al., 2015]

· · ·

[Du and Lowery, 2010] [Nakashima et al., 2017]
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• This almost looks like a deep neural net!

• Parameterize all linear steps: fθ with θ = {A
(1), . . . , A

(M)}

[Häger & Pfister, 2018], Nonlinear Interference Mitigation via Deep Neural Networks, (OFC)
[Häger & Pfister, 2021], Physics-Based Deep Learning for Fiber-Optic Communication Systems, IEEE J. Sel. Areas Commun.
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• This almost looks like a deep neural net!

• Parameterize all linear steps: fθ with θ = {A
(1), . . . , A

(M)}

• Special cases: step-size optimization, nonlinear operator “placement”, . . .

[Häger & Pfister, 2018], Nonlinear Interference Mitigation via Deep Neural Networks, (OFC)
[Häger & Pfister, 2021], Physics-Based Deep Learning for Fiber-Optic Communication Systems, IEEE J. Sel. Areas Commun.
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data in
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Tθ data out
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parameterized RX
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Cθ

surrogate channel

• Channel Cθ: fine-tune model based on experimental data, reduce
simulation time [Leibrich and Rosenkranz, 2003], [Li et al., 2005]

• Receiver Rθ: nonlinear equalization (focus in this talk)

• Transmitter Tθ: digital pre-distortion [Essiambre and Winzer, 2005],

[Roberts et al., 2006], “split” nonlinearity compensation [Lavery et al., 2016]
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• Propagation dynamics are “embedded” in the model through nonlinear steps
• Filter symmetry can be enforced in the linear steps
• Model compression (e.g., parameter pruning, quantization)

• How to interpret the solutions? Any insight gained? X

• Learned parameter configurations are interpretable
• Satisfactory explanations for benefits over previous handcrafted solutions
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≈ x

• Fiber with negated parameters (β2 → −β2, γ → −γ) would perform
perfect channel inversion [Paré et al., 1996] (ignoring attenuation)

• Digital backpropagation: invert a partial differential equation in real time
[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008]
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• Fiber with negated parameters (β2 → −β2, γ → −γ) would perform
perfect channel inversion [Paré et al., 1996] (ignoring attenuation)

• Digital backpropagation: invert a partial differential equation in real time
[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008]

• Widely considered to be impractical (too complex): linear equalization is
already one of the most power-hungry DSP blocks in coherent receivers
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• Complexity increases with the number of steps M =⇒ reduce M as
much as possible (see, e.g., [Du and Lowery, 2010], [Rafique et al., 2011],

[Li et al., 2011], [Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . . )

• Intuitive, but . . . this flattens a deep (multi-layer) computation graph

Our approach: many steps but model compression

Joint optimization, pruning, and quantization of all linear steps =⇒
hardware-efficient digital backpropagation
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mean squared error Adam optimizer, fixed learning rate

Deep learning of all FIR filter coefficients θ = {h(1), . . . , h(M)}:
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θ
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i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk)
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min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk)

Iteratively prune (set to 0) outermost filter taps during gradient descent

19 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Iterative Filter Tap Pruning

θ =

h(1)

h(2)

...

h(M)

20 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K
′ + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

20 / 27



Machine Learning Physics-Based Models Learned DBP Conclusions

Iterative Filter Tap Pruning

θ =

starting length 2K
′ + 1

h(1) = ( h
(1)
1

· · ·h
(1)
K

· · ·h
(1)

K′ h
(1)
0 h

(1)
1

· · · h
(1)
K

· · · h
(1)

K′ ) step 1

h(2) = ( h
(2)
1

· · ·h
(2)
K

· · ·h
(2)

K′ h
(2)
0 h

(2)
1

· · · h
(2)
K

· · · h
(2)

K′ ) step 2

...
...

...
...

h(M) = ( h
(M)
1

· · ·h
(M)
K

· · ·h
(M)

K′ h
(M)
0 h

(M)
1

· · · h
(M)
K

· · · h
(M)

K′ ) step M

• Initially: constrained least-squares coefficients (LS-CO) [Sheikh et al., 2016]
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Revisiting Ip and Kahn (2008)
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and use different filter coefficients in all steps [Häger and Pfister, 2018a]
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• RRC pulses (0.1 roll-off)

• 10.7 Gbaud

• 2 samples/symbol processing

• single channel, single pol.

• ≫ 1000 total taps (70 taps/step) =⇒ > 100× complexity of EDC

• Learned approach uses only 77 total taps: alternate 5 and 3 taps/step
and use different filter coefficients in all steps [Häger and Pfister, 2018a]

• Can outperform “ideal DBP” in the nonlinear regime [Häger and Pfister, 2018b]
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[Crivelli et al., 2014]

[Fougstedt et al., 2017], Time-domain digital back propagation: Algorithm and finite-precision implementation aspects, (OFC)
[Fougstedt et al., 2018], ASIC implementation of time-domain digital back propagation for coherent receivers, (PTL)
[Sherborne et al., 2018], On the impact of fixed point hardware for optical fiber nonlinearity compensation algorithms, (JLT)
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• Our linear steps are very short symmetric FIR filters (as few as 3 taps)

• 28-nm ASIC at 416.7 MHz clock speed (40 GHz signal)

• Only 5-6 bit filter coefficients via learned quantization
• Hardware-friendly nonlinear steps (Taylor expansion)
• All FIR filters are fully reconfigurable

[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters,
(ECOC)
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• Our linear steps are very short symmetric FIR filters (as few as 3 taps)

• 28-nm ASIC at 416.7 MHz clock speed (40 GHz signal)

• Only 5-6 bit filter coefficients via learned quantization
• Hardware-friendly nonlinear steps (Taylor expansion)
• All FIR filters are fully reconfigurable

• < 2× power compared to EDC [Crivelli et al., 2014, Pillai et al., 2014]

[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters,
(ECOC)
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Why Does The Learning Approach Work?

Previous work: design a single filter or filter pair and use it repeatedly.

=⇒ Good overall response only possible with very long filters.

individual filter responses
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From [Ip and Kahn, 2009]:

• “We also note that [. . . ] 70 taps, is much larger than expected”

• “This is due to amplitude ringing in the frequency domain”

• “Since backpropagation requires multiple iterations of the linear filter,
amplitude distortion due to ringing accumulates (Goldfarb & Li, 2009)”
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From [Ip and Kahn, 2009]:

• “We also note that [. . . ] 70 taps, is much larger than expected”

• “This is due to amplitude ringing in the frequency domain”

• “Since backpropagation requires multiple iterations of the linear filter,
amplitude distortion due to ringing accumulates (Goldfarb & Li, 2009)”

The learning approach uncovered that there is no such requirement!
[Lian, Häger, Pfister, 2018], What can machine learning teach us about communications? (ITW)
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Sacrifice individual filter accuracy, but different response per step.

=⇒ Good overall response even with very short filters by joint optimization.

individual filter responses
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Experimental Investigations

Training with real-world data sets including presence of various hardware
impairments (phase noise, timing error, frequency offset, etc.)

• [Oliari et al., 2020], Revisiting Efficient Multi-step Nonlinearity Compensation with Machine
Learning: An Experimental Demonstration, (J. Lightw. Technol.)

• [Sillekens et al., 2020], Experimental Demonstration of Learned Time-domain Digital
Back-propagation, (Proc. IEEE Workshop on Signal Processing Systems)

• [Fan et al., 2020], Advancing Theoretical Understanding and Practical Performance of Signal
Processing for Nonlinear Optical Communications through Machine Learning,
(Nat. Commun.)

• [Bitachon et al., 2020], Deep learning based Digital Back Propagation Demonstrating SNR
gain at Low Complexity in a 1200 km Transmission Link, (Opt. Express)
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Outline

1. Machine Learning and Neural Networks for Communications

2. Physics-Based Machine Learning for Fiber-Optic Communications

3. Learned Digital Backpropagation

4. Conclusions
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The Bigger Picture

[Crivelli et al., 2014]

• Optical receivers build models of their "environment"

[Ha & Schmidhuber, 2018], "World Models", arXiv:1803.10122 [cs.LG]
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The Bigger Picture

[Crivelli et al., 2014]

• Optical receivers build models of their "environment"

• Currently these models are linear and/or rigid (non-adaptive)

• Interpretable physics-based “multi-layer” models for machine learning can
be obtained by exploiting our existing domain knowledge

[Ha & Schmidhuber, 2018], "World Models", arXiv:1803.10122 [cs.LG]
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experience and fine-tuning

relies on domain knowledge
(algorithms, physics, . . . )

black boxes,
difficult to “open”

familiar building blocks (e.g., FIR
filters) can enable interpretability

[Häger & Pfister, 2021], “Physics-Based Deep Learning for Fiber-Optic Communication Systems”,
in IEEE J. Sel. Areas Commun., see https://arxiv.org/abs/2010.14258

Code: https://github.com/chaeger/LDBP

27 / 27

https://arxiv.org/abs/2010.14258
https://github.com/chaeger/LDBP


Machine Learning Physics-Based Models Learned DBP Conclusions

Conclusions
neural-network-based ML model-based ML

universal function approximators application-tailored

good designs require
experience and fine-tuning

relies on domain knowledge
(algorithms, physics, . . . )

black boxes,
difficult to “open”

familiar building blocks (e.g., FIR
filters) can enable interpretability

[Häger & Pfister, 2021], “Physics-Based Deep Learning for Fiber-Optic Communication Systems”,
in IEEE J. Sel. Areas Commun., see https://arxiv.org/abs/2010.14258

Code: https://github.com/chaeger/LDBP

Thank you!
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