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Outline

1. “Black-box” Neural Networks

m Self-interference cancellation in full-duplex radios
m Digital pre-distortion of power amplifier non-linearities

2. Model-Based Neural Networks
m Deep unfolding for self-interference cancellation in full-duplex radios
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Bi-directional Wireless Communications

Time-division duplexing (TDD)

Wasted time resources: switching interval

Frequency-division duplexing (FDD)

Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)
Up to twice the throughput wrt TDD & FDD!
No additional bandwidth

No wasted time or frequency resources

Fundamental Challenge

FREQ
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FREQ

TIME

FREQ

Self-interference is much stronger than the desired signal!
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Self-Interference Cancellation in Full-Duplex Radios

® |n principle, cancellation is easy since digital transmitted signal is known!

® |n practice, the digital signal does not tell the whole story.
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3. Active digital cancellation
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Self-Interference Cancellation in Full-Duplex Radios

® |n principle, cancellation is easy since digital transmitted signal is known!

® |n practice, the digital signal does not tell the whole story.

1Q mixer BP filter
X
() —— Yoty Xm (@

Y ' g
Digital self- Local Analog self-
interference : interference
3 oscillator s
cancellation cancellation
&Y ancenea(, y(n,
+ +

1Q mixer BP filter

® Three-stage cancellation process:

1. Passive analog cancellation
2. Active analog cancellation
3. Active digital cancellation

Our focus: digital S| cancellation

Strong non-linear component effects need to be taken into account!
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Self-Interference Cancellation Using a Polynomial Model

® Main transceiver non-linearities:

1. Power Amplifier: Odd harmonics (even harmonics lie out of band when filtered)
2. Mixer: 1Q imbalance
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® Main transceiver non-linearities:

1. Power Amplifier: Odd harmonics (even harmonics lie out of band when filtered)
2. Mixer: 1Q imbalance

® State-of-the-art polynomial non-linear cancellation model:

p L—1

v =Y "33 healllxln = Nx"[n = 1°~°

p=1, g=0 /=0
p odd

basis functions

1. D. Korpi, L. Anttila, and M. Valkama, “Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk,” EURASIP
Journal on Wireless Communications and Networking, Feb. 2017
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® State-of-the-art polynomial non-linear cancellation model:
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Highly Redundant

Most terms in the above equation contribute very little to the final result!

basis functions
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Self-Interference Cancellation Using a Polynomial Model

® Main transceiver non-linearities:
1. Power Amplifier: Odd harmonics (even harmonics lie out of band when filtered)
2. Mixer: 1Q imbalance

® State-of-the-art polynomial non-linear cancellation model:

P p L-1
A =32 Aol — 1% [0 — 17
p=1, q=0 /=0 basis functions

p odd

Highly Redundant

Most terms in the above equation contribute very little to the final result!

Alternative Approach

Use a neural network to reproduce the Sl non-linearities.

1. D. Korpi, L. Anttila, and M. Valkama, “Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk,” EURASIP
Journal on Wireless Communications and Networking, Feb. 2017

2. A. Balatsoukas-Stimming, “Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks,” IEEE International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2018
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Self-Interference Cancellation Using Neural Networks

® Focus separately on linear and non-linear SI:  y[n] = yin[n] + ya[n]
"~

easy! hard!
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Self-Interference Cancellation Using Neural Networks

® Focus separately on linear and non-linear SI:  y[n] = yin[n] + yn[n]
—_~—

easy! hard!
® Two-step cancellation:

1. Use standard linear digital cancellation: §,[n] = Z,Ln_:t hya[m]x[n — m]

2. Train a neural network to reproduce and cancel yn[n] = y[n] — Jin[n]

@ R{Istnontinear[n]}

Identical SI cancellation with
@ S{sinondinear[n]}

significantly lower complexity
than the polynomial model!

S{x[n-1]} —

R{x[n—L+1]} —
S{x[n—-L+1]} —
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Self-Interference Cancellation Performance

® Dataset: measured 20 MHz OFDM signal, sampled at 80 MHz

DOMNGIE >

® Performance evaluation: Cyg = 10log;, <W
yln]—yI[n

1. Y. Kurzo, A. Kri A. Burg, A. Bal kas-Stimming, “Hardware implementation of neural self-interference cancellation,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, Feb. 2020
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Self-Interference Cancellation Performance

® Dataset: measured 20 MHz OFDM signal, sampled at 80 MHz

® Performance evaluation: Cyg = 10log;, <
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Self-Interference Cancellation Performance

® Dataset: measured 20 MHz OFDM signal, sampled at 80 MHz
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Self-Interference Cancellation Complexity

Polynomial NN
Cancellation (dB) 30.5 323
Real Additions 418 82 (—80%)
Real Multiplications 180 60 (—67%)
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Self-Interference Cancellation Complexity

Polynomial NN
Cancellation (dB) 30.5 323
Real Additions 418 82 (—80%)
Real Multiplications 180 60 (—67%)

® Endless possibilities for improvement:

1. Complex-valued NNs
2. Deep NNs
3. Recurrent NNs

1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Advanced machine learning techniques for self-interference cancellation in full-duplex radios,”
Asilomar Conference on Signals, Systems, and Computers, Nov. 2019
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Self-Interference Cancellation Complexity

Polynomial NN
Cancellation (dB) 30.5 323
Real Additions 418 82 (—80%)
Real Multiplications 180 60 (—67%)

® Endless possibilities for improvement:

1. Complex-valued NNs
2. Deep NNs
3. Recurrent NNs

How do these gains translate into hardware?

1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Advanced machine learning techniques for self-interference cancellation in full-duplex radios,”
Asilomar Conference on Signals, Systems, and Computers, Nov. 2019
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Results: ASIC Implementation
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Y. Kurzo, A. Kri: A. Burg, A. Stimming, “Hardware implementation of neural self-interference cancellation,” IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, Feb. 2020
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Results: ASIC Implementation

1.

38
m
T 36 B
3 34l |
c = = = Polynomial (FP)
S 32 :
=] === Polynomial (FXP)
= 30 == NN (FP)
2 =—@— NN (FXP)
o 28
O
n 26 —
[ R B B N L1
13 14 15 16 17 18 19 20 21 22 23 2 26
Bit-width Q (bits)
ASIC Implementation (28nm FD-S0I, typical corners, at 0.9 V, 25 °C)
Polynomial NN

Throughput (MS/s) 80 80

Area (mm?) 0.18 0.02 (—89%)

Power (mW) 84.1 11.0 (—87%)

Y. Kurzo, A. Kri: A. Burg, A. Stimming, “Hardware implementation of neural self-interference cancellation,” IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, Feb. 2020

TU/e



Neural Network Assisted Digital Predistortion

® Power amplifier (PA) non-linearities are a significant transmitter impairment.
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Neural Network Assisted Digital Predistortion

® Power amplifier (PA) non-linearities are a significant transmitter impairment.

® Digital predistortion (DPD) corrects PA impairments in the digital domain.

If we want to transmit x and the PA can be modelled as a non-linear function f(-), we
create f~!(x) so that f(f~!(x)) = x is transmitted.

FPGA Implementation

® Xilinx System Generator
® Zynq UltraScale+ RFSoC ZCU1285

| Poly NN
LUT 539 379 -30%
FF 991 538 -48%
DSP 27 24 -13%

1. C. Tarver, A. Balatsoukas-Stimming, J. R. Cavallaro, “Design and implementation of a neural network based predistorter for enhanced mobile
broadband,” IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2019

1° TU/e



Neural Network Assisted Digital Predistortion

® Power amplifier (PA) non-linearities are a significant transmitter impairment.

® Digital predistortion (DPD) corrects PA impairments in the digital domain.

If we want to transmit x and the PA can be modelled as a non-linear function f(-), we
create f~!(x) so that f(f~!(x)) = x is transmitted.

FPGA Implementation

® Xilinx System Generator
® Zynq UltraScale+ RFSoC ZCU1285
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LUT 539 379  -30% same pre-distortion performance!
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DSP 27 24 -13%
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Neural Network Assisted Digital Predistortion

® Power amplifier (PA) non-linearities are a significant transmitter impairment.

® Digital predistortion (DPD) corrects PA impairments in the digital domain.

If we want to transmit x and the PA can be modelled as a non-linear function f(-), we
create f~!(x) so that f(f~!(x)) = x is transmitted.

FPGA Implementation

® Xilinx System Generator
® Zynq UltraScale+ RFSoC ZCU1285

| Poly NN Significantly fewer resources for the
LUT 539 379  -30% same pre-distortion performance!
FF 991 538 -48%
DSP 27 24 -13%

NN models may be less sensitive to low oversampling!

1. C. Tarver, A. Balatsoukas-Stimming, J. R. Cavallaro, “Design and implementation of a neural network based predistorter for enhanced mobile
broadband,” IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2019

2. C. Tarver, A. Balatsoukas-Stimming, J. R. Cavallaro, “Predistortion of OFDM Waveforms using Guard-band Subcarriers,” IEEE Asilomar
Conference on Signals, Systems, and Computers, Nov. 2020
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Model-Based Neural Networks via Deep Unfolding

“Black-box” NN issues:
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Model-Based Neural Networks via Deep Unfolding

“Black-box” NN issues:

1. Large amount of trainable parameters — large amount of training data!
2. No performance guarantees and not interpretable!

3. Difficult to include expert knowledge!

Model-based NNs take a more principled approach

Deep Unfolding [Hershey et al., 2014]

“[...] given a model-based approach that requires an iterative inference method, we
unfold the iterations into a layer-wise structure analogous to a neural network”

1. J. R. Hershey, J. Le Roux, F. Weninger, “Deep unfolding: Model-based inspiration of novel deep architectures,” arXiv:1409.2574, Nov. 2014
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Model-Based Neural Networks via Deep Unfolding

“Black-box” NN issues:
1. Large amount of trainable parameters — large amount of training data!
2. No performance guarantees and not interpretable!

3. Difficult to include expert knowledge!
Model-based NNs take a more principled approach

Deep Unfolding [Hershey et al., 2014]

“[...] given a model-based approach that requires an iterative inference method, we
unfold the iterations into a layer-wise structure analogous to a neural network”

Large number of applications in communications & signal processing!

Examples:
1. Deep unfolding for self-interference cancellation in full-duplex radios

1. J. R. Hershey, J. Le Roux, F. Weninger, “Deep unfolding: Model-based inspiration of novel deep architectures,” arXiv:1409.2574, Nov. 2014

2. A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for communications: A survey and some new directions,” IEEE Workshop on Signal
Processing Systems (SiPS), Oct. 2019

3. V. Monga, Y. Li, Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Processing
Magazine, Mar. 2021
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Deep Unfolding for Self-Interference Cancellation

® Concept: unfold the non-linear equations and train using backpropagation

L-1 P
yln] = E E ho[)(Kix[n — 1] + Kox™[n — [)|(Kix[n — ] + Kox"[n — [P~
1=0 Szoéé xqQln—1 xqln—1]

1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “ldentification of non-linear RF systems using backpropagation,” IEEE International Conference

5 on Communications (ICC), Jun. 2020 TU/
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® Concept: unfold the non-linear equations and train using backpropagation

L-1 P
yln] = E E ho[)(Kix[n — 1] + Kox™[n — [)|(Kix[n — ] + Kox"[n — [P~
1=0 ,;)vzmlj:i xqQln—1 xqln—1]

x[n] ~>.
x*[n] ~>.

x[n—L+1] ~>.
x*[n—L+1] ~>.

A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Identification of non-linear RF systems using backpropagation,” IEEE International Conference
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Deep Unfolding for Self-Interference Cancellation

® Concept: unfold the non-linear equations and train using backpropagation

L-1 P
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1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “ldentification of non-linear RF systems using backpropagation,” IEEE International Conference

5 on Communications (ICC), Jun. 2020 TU/



Deep Unfolding for Self-Interference Cancellation

® Concept: unfold the non-linear equations and train using backpropagation

L—-1 P
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1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “ldentification of non-linear RF systems using backpropagation,” IEEE International Conference
on Communications (ICC), Jun. 2020 TU



Deep Unfolding for Self-Interference Cancellation

® Concept: unfold the non-linear equations and train using backpropagation

L—1 P
y[n] = Z Z holl)(Kux[n — 1] + Kox™[n — )| (Kux[n — 1] + Kox*[n — 1)~
1=0 535& xqQln—1 xqln—1]

x[n] — K1
x*[n] — Ky
x[n—L+1] — K1
x*[n—L+1] — K>

1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “ldentification of non-linear RF systems using backpropagation,” IEEE International Conference

5 on Communications (ICC), Jun. 2020 TU/
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Deep Unfolding for Self-Interference Cancellation

® Concept: unfold the non-linear equations and train using backpropagation

L-1 P
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=0 5111:i xqQln—1 xqln—1]
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x*[n] —@ :
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Deep Unfolding for Self-Interference
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Deep Unfolding for Self-Interference Cancellation - Results

S| Cancellation (dB)

250 500 750 1,000 1,250

# Real-Valued FLOPS

—4&— Model-based NN
—A— CVNN

® More than 2x lower complexity than black-box NNs for the same performance!
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Deep Unfolding for Self-Interference Cancellation - Results

S| Cancellation (dB)

250 500 750 1,000 1,250

# Real-Valued FLOPS

—4&— Model-based NN
—A— CVNN

® More than 2x lower complexity than black-box NNs for the same performance!

® Can be used verbatim in many other applications, such as DPD.
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Conclusions

Main take-away messages:

1. Neural networks are particularly well-suited for non-linear signal processing.

2. Deep unfolding is an elegant way to obtain compact and efficient model-based
neural networks for communications & signal processing.
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Conclusions

Main take-away messages:

1. Neural networks are particularly well-suited for non-linear signal processing.

2. Deep unfolding is an elegant way to obtain compact and efficient model-based
neural networks for communications & signal processing.

Questions?
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