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Machine Learning & Communications: An Unlikely Alliance?

• Communications are traditionally
model-based and rigorous.

• Existing models have worked
exceptionally well in the past

T. Kürner and S. Priebe, “Towards THz Communications - Status in Research,
Standardization and Regulation,” 2014

What’s the point of using ML in communications?

Some reasons:
• Communications channels start becoming very challenging to model
• Ever-increasing network complexity makes tasks such as scheduling difficult
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Outline

1. “Black-box” Neural Networks
Self-interference cancellation in full-duplex radios
Digital pre-distortion of power amplifier non-linearities

2. Model-Based Neural Networks
Deep unfolding for self-interference cancellation in full-duplex radios
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Bi-directional Wireless Communications

Time-division duplexing (TDD)
Wasted time resources: switching interval

Frequency-division duplexing (FDD)
Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)
Up to twice the throughput wrt TDD & FDD!
No additional bandwidth
No wasted time or frequency resources

Fundamental Challenge
Self-interference is much stronger than the desired signal!
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Self-Interference Cancellation in Full-Duplex Radios

• In principle, cancellation is easy since digital transmitted signal is known!
• In practice, the digital signal does not tell the whole story.

DAC xIQ(n)x(n) PA

ADCy(n) LNA

BP filter

BP filter

IQ mixer

IQ mixer

Local 
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hSI

Analog self-
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cancellation

-
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• Three-stage cancellation process:

1. Passive analog cancellation
2. Active analog cancellation
3. Active digital cancellation

Our focus: digital SI cancellation
Strong non-linear component effects need to be taken into account!
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Self-Interference Cancellation Using a Polynomial Model

• Main transceiver non-linearities:
1. Power Amplifier: Odd harmonics (even harmonics lie out of band when filtered)
2. Mixer: IQ imbalance

• State-of-the-art polynomial non-linear cancellation model:

y [n] =
P∑

p=1,
p odd

p∑
q=0

L−1∑
l=0

hp,q[l ] x [n − l ]qx∗[n − l ]p−q︸ ︷︷ ︸
basis functions

Highly Redundant
Most terms in the above equation contribute very little to the final result!

Alternative Approach
Use a neural network to reproduce the SI non-linearities.

1. D. Korpi, L. Anttila, and M. Valkama, “Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk,” EURASIP
Journal on Wireless Communications and Networking, Feb. 2017

2. A. Balatsoukas-Stimming, “Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks,” IEEE International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2018
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Self-Interference Cancellation Using Neural Networks

• Focus separately on linear and non-linear SI: y [n] = ylin[n]︸ ︷︷ ︸
easy!

+ ynl[n]︸︷︷︸
hard!

• Two-step cancellation:

1. Use standard linear digital cancellation: ŷlin[n] =
∑L−1

m=0 ĥ1,1[m]x [n −m]
2. Train a neural network to reproduce and cancel ynl[n] ≈ y [n]− ŷlin[n]

<{x [n]}

={x [n]}

<{x [n−1]}

={x [n−1]}
...

...
<{x [n−L + 1]}

={x [n−L + 1]}

...

<{ŷSI,non-linear[n]}

={ŷSI,non-linear[n]}
Identical SI cancellation with
significantly lower complexity

than the polynomial model!
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Self-Interference Cancellation Performance

• Dataset: measured 20 MHz OFDM signal, sampled at 80 MHz

• Performance evaluation: CdB = 10 log10

( ∑
n
|y [n]|2∑

n
|y [n]−ŷ [n]|2

)
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1. Y. Kurzo, A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Hardware implementation of neural self-interference cancellation,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, Feb. 2020
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Self-Interference Cancellation Complexity

Polynomial NN
Cancellation (dB) 30.5 32.3
Real Additions 418 82 (−80%)
Real Multiplications 180 60 (−67%)

• Endless possibilities for improvement:

1. Complex-valued NNs
2. Deep NNs
3. Recurrent NNs

How do these gains translate into hardware?

1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Advanced machine learning techniques for self-interference cancellation in full-duplex radios,”
Asilomar Conference on Signals, Systems, and Computers, Nov. 2019
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Results: ASIC Implementation
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ASIC Implementation (28nm FD-SOI, typical corners, at 0.9 V, 25 °C)

Polynomial NN
Throughput (MS/s) 80 80
Area (mm2) 0.18 0.02 (−89%)
Power (mW) 84.1 11.0 (−87%)

1. Y. Kurzo, A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Hardware implementation of neural self-interference cancellation,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, Feb. 2020
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Neural Network Assisted Digital Predistortion

• Power amplifier (PA) non-linearities are a significant transmitter impairment.

• Digital predistortion (DPD) corrects PA impairments in the digital domain.

If we want to transmit x and the PA can be modelled as a non-linear function f (·), we
create f −1(x) so that f (f −1(x)) = x is transmitted.

FPGA Implementation
• Xilinx System Generator
• Zynq UltraScale+ RFSoC ZCU1285

Poly NN
LUT 539 379 -30%
FF 991 538 -48%
DSP 27 24 -13%

Significantly fewer resources for the
same pre-distortion performance!

NN models may be less sensitive to low oversampling!

1. C. Tarver, A. Balatsoukas-Stimming, J. R. Cavallaro, “Design and implementation of a neural network based predistorter for enhanced mobile
broadband,” IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2019

2. C. Tarver, A. Balatsoukas-Stimming, J. R. Cavallaro, “Predistortion of OFDM Waveforms using Guard-band Subcarriers,” IEEE Asilomar
Conference on Signals, Systems, and Computers, Nov. 2020
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Model-Based Neural Networks via Deep Unfolding

“Black-box” NN issues:

1. Large amount of trainable parameters −→ large amount of training data!
2. No performance guarantees and not interpretable!
3. Difficult to include expert knowledge!

Model-based NNs take a more principled approach

Deep Unfolding [Hershey et al., 2014]
“[...] given a model-based approach that requires an iterative inference method, we
unfold the iterations into a layer-wise structure analogous to a neural network”

Large number of applications in communications & signal processing!
Examples:

1. Deep unfolding for self-interference cancellation in full-duplex radios

1. J. R. Hershey, J. Le Roux, F. Weninger, “Deep unfolding: Model-based inspiration of novel deep architectures,” arXiv:1409.2574, Nov. 2014
2. A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for communications: A survey and some new directions,” IEEE Workshop on Signal

Processing Systems (SiPS), Oct. 2019
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Deep Unfolding for Self-Interference Cancellation

• Concept: unfold the non-linear equations and train using backpropagation

y [n] =
L−1∑
l=0

P∑
p=1,
p odd

hp [l](K1x [n − l] + K2x∗[n − l]︸ ︷︷ ︸
xIQ[n−l]

)|(K1x [n − l] + K2x∗[n − l]︸ ︷︷ ︸
xIQ[n−l]

)|p−1

x [n]

x∗[n]

x [n−L+1]

x∗[n−L+1]

...· · ·

...

xIQ

xIQ|xIQ|2

xIQ|xIQ|P−1

...

xIQ

xIQ|xIQ|2

xIQ|xIQ|P−1

...

ŷ [n]

K1

K2

K1

K2

h1 [n]
h3 [n]

hP [n]

h1[n
−L+1]

h 3[n
−L+1]

h P
[n−

L+
1]

• Goal:
{

ĥp [l], K̂1, K̂2
}

= arg min
{hp [l],K1,K2}

1
N

N∑
i=1

|y [n]− ŷ [n]|2

1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Identification of non-linear RF systems using backpropagation,” IEEE International Conference
on Communications (ICC), Jun. 2020
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1. A. Kristensen, A. Burg, A. Balatsoukas-Stimming, “Identification of non-linear RF systems using backpropagation,” IEEE International Conference
on Communications (ICC), Jun. 2020

12



Deep Unfolding for Self-Interference Cancellation

• Concept: unfold the non-linear equations and train using backpropagation

y [n] =
L−1∑
l=0

P∑
p=1,
p odd

hp [l](K1x [n − l] + K2x∗[n − l]︸ ︷︷ ︸
xIQ[n−l]

)|(K1x [n − l] + K2x∗[n − l]︸ ︷︷ ︸
xIQ[n−l]

)|p−1

x [n]

x∗[n]

x [n−L+1]

x∗[n−L+1]

...· · ·

...

xIQ

xIQ|xIQ|2

xIQ|xIQ|P−1

...

xIQ

xIQ|xIQ|2

xIQ|xIQ|P−1

...
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Deep Unfolding for Self-Interference Cancellation - Results
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• More than 2x lower complexity than black-box NNs for the same performance!
• Can be used verbatim in many other applications, such as DPD.
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Conclusions

Main take-away messages:
1. Neural networks are particularly well-suited for non-linear signal processing.
2. Deep unfolding is an elegant way to obtain compact and efficient model-based

neural networks for communications & signal processing.

Questions?
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