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A Low Complexity
Modulation Classification Algorithm for MIMO Systems

Michael S. Mühlhaus, Mengüç Öner, Octavia A. Dobre, and Friedrich K. Jondral

Abstract—A novel algorithm is proposed for automatic mod-
ulation classification in multiple-input multiple-output spatial
multiplexing systems, which employs fourth-order cumulants of
the estimated transmit signal streams as discriminating features
and a likelihood ratio test (LRT) for decision making. The
asymptotic likelihood function of the estimated feature vector is
analytically derived and used with the LRT. Hence, the algorithm
can be considered as asymptotically optimal for the employed
feature vector when the channel matrix and noise variance are
known. Both the case with perfect channel knowledge and the
practically more relevant case with blind channel estimation
are considered. The results show that the proposed algorithm
provides a good classification performance while exhibiting a
significantly lower computational complexity when compared
with conventional algorithms.

Index Terms—Automatic modulation classification, multiple-
input multiple-output, fourth-order cumulant

I. INTRODUCTION

Automatic modulation classification (AMC) of unknown
communication signals finds application in cognitive radio,
spectrum surveillance, signal intelligence, and electronic war-
fare [1], [2]. AMC can be considered as a multiple hypothesis-
testing problem, with each hypothesis Hq corresponding to
a modulation type Mq . The decision on Mq ∈ M, with
M as the set of possible modulation types, is made based
on a finite number of observations of the received signal
corrupted by fading and noise. Two different approaches to the
AMC problem exist in the literature for conventional single-
input single-output systems, i.e., the likelihood- and feature-
based algorithms, respectively [1]. The former relies on the
likelihood function of the received signal, while the latter
employs extracted signal features.

The recent advance of multiple-input multiple-output
(MIMO) technology has given rise to a need for new AMC
algorithms, able to operate in such environments. The research
in this area is at a very incipient stage, and only a few works
are available in the literature [3]–[5]. In [3], Choqueuse et al.
proposed an average likelihood ratio test (ALRT) for spatially
multiplexed MIMO systems that is optimal in the Bayesian
sense, given that the channel matrix and the noise variance are
known; hence, its classification performance can be regarded
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as an upper performance bound for the AMC problem. In the
same work, a suboptimal hybrid likelihood ratio test (HLRT)
is presented, which employs blind channel estimation, and is
therefore more practical. However, both algorithms exhibit a
high computational complexity, which severely limits their ap-
plicability. The feature-based approach is followed in [4] and
[5]. Diverse higher-order signal statistics are used as features
in [4] with a neural network-based algorithm that requires
prior training and is sensitive to channel estimation errors. The
algorithm in [5] employs higher-order signal statistics with a
sub-optimal criterion of decision.

In this work, we propose a novel feature-based AMC
algorithm for spatially multiplexed MIMO systems, which
relies on fourth-order cumulants as discriminating features. We
derive the expression for the asymptotic likelihood function
of the estimated feature vector and use a likelihood ratio test
(LRT) for decision making. The algorithm is asymptotically
optimal for the employed feature vector in the case of perfectly
known channel matrix and noise variance. For the practically
more relevant case when the channel matrix is not available,
a blind channel estimation scheme is employed prior to the
feature extraction and classification, and the asymptotic like-
lihood function is evaluated using the blind channel estimate.
The classification performance and computational complexity
of the proposed algorithm are investigated and compared with
those of ALRT and HLRT.

II. SYSTEM MODEL

We consider an Nt × Nr spatially multiplexed MIMO
system with Nt transmit and Nr receive antennas, Nr ≥ Nt.
The received signal vector r[k] = [r1[k], . . . , rNr [k]]

T at time
instant k = 1, . . . , N is expressed as

r[k] = Hs[k] +w[k] , (1)
where s[k] = [s1[k], . . . , sNt [k]]

T is the vector of baseband
transmit symbols, w[k] is the circular complex additive white
Gaussian noise vector with variance σ2

w , and H is the Nr×Nt

channel matrix whose elements hnr,nt , nr = 1, . . . , Nr,
nt = 1, . . . , Nt, represent the channel coefficients between
the nr-th receive and nt-th transmit antenna, which are
modeled as independent zero-mean circular complex Gaussian
random variables with unit variance. We assume a flat block
fading channel over the observation interval. Without loss of
generality, we assume unit power transmit signals; hence, the
average signal-to-noise ratio (SNR) is expressed as SNR = Nt

σ2
w

[3].

III. CLASSIFICATION ALGORITHM

We propose an AMC algorithm for spatially multiplexed
MIMO signals, which relies on the fourth-order cumulants
with zero and with two conjugates, i.e., κ(4,0) and κ(4,2),
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TABLE I
FOURTH-ORDER CUMULANTS FOR UNIT VARIANCE CONSTELLATIONS.

BPSK QPSK 8-PSK 16-QAM 64-QAM

κ
(4,0)
q −2 1 0 −0.68 −0.619

κ
(4,2)
q −2 −1 −1 −0.68 −0.619

respectively, as discriminating features. For a zero-mean sta-
tionary random sequence s[k], these are given as [6]

κ(4,0) =μ(4,0) − 3(μ(2,0))2, (2)

and
κ(4,2) =μ(4,2) − |μ(2,0)|2 − 2(μ(2,1))2, (3)

where μ(β,γ) = E{s[k]β−γs[k]∗γ} is the moment of order
β with γ conjugates and E{·} is the statistical expectation
operator. Theoretical values of κ(4,0) and κ(4,2) for different
unit variance constellations are provided in Table I. For the
theoretical values of the corresponding moments, the reader
is referred to [1]. Note that the estimates of κ(4,0) and κ(4,2)

are obtained from (2) and (3) with the moments replaced by
their corresponding finite sample estimates [6].

Clearly, the cumulant features cannot be directly estimated
from r[k] in (1) due to the channel effects, which are required
to be compensated for prior to feature estimation. In the
following, we consider both the ideal case with perfectly
known channel matrix H and the more realistic case where a
blind estimation of H is employed.
A. Classification with Perfect Channel Knowledge

If the channel matrix is perfectly known, the transmit signal
is estimated as

ŝ[k] = (H†H)−1H†r[k] = s[k] + w̃[k], (4)

where † represents the Hermitian transpose operation and the
noise term term w̃[k] is non-white. The cumulant features are
estimated from ŝ[k], i.e.,

κ̂ = [κ̂(4,0)T , κ̂(4,2)T ]T

= [κ̂
(4,0)
1 , . . . , κ̂

(4,0)
Nt

, κ̂
(4,2)
1 , . . . , κ̂

(4,2)
Nt

]T , (5)

where κ̂
(4,0)
nt and κ̂

(4,2)
nt are the estimates of the cumulants

corresponding to the estimated symbol stream from the nt-th
transmit antenna, ŝnt [k], nt = 1, . . . , Nt.

In this work, we propose a classification strategy, which
is based on the asymptotic likelihood function of the feature
vector κ̂. It is well known that the finite sample estimates of
cumulants are consistent and asymptotically (as the sample
size N → ∞ ) unbiased and Gaussian distributed [7]. Thus,
the asymptotic likelihood function of the feature vector under
the hypothesis Hq is given as

p(κ̂|Mq, σ
2
w,H) =

1

π2Nt |Σq,σ2
w ,H| exp(−(κ̂− κq)

†Σ−1
q,σ2

w ,H(κ̂− κq)), (6)

with the mean
κq = [κ(4,0)

q 1T
Nt, κ

(4,2)
q 1T

Nt]
T , (7)

and the covariance matrix

Σq,σ2
w ,H =

[
Σ

(4,0)
q,σ2

w ,H Σ
(4,0),(4,2)
q,σ2

w ,H

Σ
(4,2),(4,0)
q,σ2

w ,H Σ
(4,2)
q,σ2

w ,H

]
, (8)

where 1Nt is an Nt×1 vector of ones, Σ(4,0)
q,σ2

w ,H and Σ
(4,2)
q,σ2

w ,H

are the covariance matrices of κ̂(4,0) and κ̂(4,2), respectively,
and Σ

(4,0),(4,2)
q,σ2

w ,H is the cross-covariance matrix of κ̂(4,0) and

κ̂(4,2). The mean of the feature vector depends on the mod-
ulation type Mq, while its covariance matrix additionally
depends on the channel matrix H and the noise variance
σ2
w. By using the independence of the transmit signal and

noise, the expressions of the cumulant estimators [7] and those
of the higher-order joint moments of the non-white noise
w̃[k] calculated according to the Isserlis’ theorem [8], and
neglecting the terms proportional to N−2 and N−3 for large
N , one can show that the covariance matrices Σ

(4,0)
q,σ2

w ,H and

Σ
(4,2)
q,σ2

w ,H can be approximated as

Σ
(4,0)
q,σ2

w ,H ≈ 1

N
24σ8

w((H
†H)−1)◦4 +

1

N
INt◦

((16μ(6,3)
q − 96μ(2,0)

q μ(4,1)
q + 144(μ(2,0)

q )2μ(2,1)
q )σ2

w(H
†H)−1

+ (72μ(4,2)
q − 72(μ(2,0)

q )2)σ4
w((H

†H)−1)◦2

+ 96σ6
wμ

(2,1)
q ((H†H)−1)◦3 + INt(μ

(8,4)
q − 12μ(2,0)

q μ(6,2)
q

+ 12(μ(2,0)
q )2μ(4,0)

q + 36(μ(2,0)
q )2μ(4,2)

q − 36(μ(2,0)
q )4)

− (μ(4,0)
q )2), (9)

Σ
(4,2)
q,σ2

w ,H ≈ 1

N
I
Nt

◦ (4σ8
w((H

†H)−1)◦4

+ 16σ6
wμ

(2,1)
q ((H†H)−1)◦3 + (20μ(4,2)

q − 4(μ(2,0)
q )2

− 16(μ(2,1)
q )2)σ4

w((H
†H)−1)◦2 + (8μ(6,3)

q − 32μ(2,1)
q μ(4,2)

q

− 16μ(2,0)
q μ(4,1)

q + 40(μ(2,0)
q )2μ(2,1)

q

+ 32(μ(2,1)
q )3)σ2

w(H
†H)−1 + INt(μ

(8,4)
q − (μ(4,2)

q )2

− 4μ(2,0)
q μ(6,2)

q − 8μ(2,1)
q μ(6,3)

q + 6(μ(2,0)
q )2μ(4,2)

q

+ 24(μ(2,1)
q )2μ(4,2)

q + 2(μ(2,0)
q )2μ(4,0)

q + 16μ(2,0)
q μ(2,1)

q μ(4,1)
q

− 16(μ(2,0)
q )2(μ(2,1)

q )2 − 16(μ(2,1)
q )4 − 4(μ(2,0)

q )4)), (10)

where INt is the Nt × Nt identity matrix, ◦ denotes the
Hadamard product, H◦α = H ◦ H ◦ . . . ◦ H (α times),
and μ

(β,γ)
q is the β-th order moment with γ conjugates for

the modulation type Mq. The expression for Σ
(4,0),(4,2)
q,σ2

w ,H and
derivation of the covariance matrices are omitted due to space
considerations. The classification of the modulation type is
performed by choosing the hypothesis that maximizes the
asymptotic likelihood function in (6), i.e.

M̂ = arg max
Mq∈M

p(κ̂|Mq, σ
2
w,H), (11)

which can be considered as asymptotically optimal for the
employed feature vector, assuming equiprobable hypotheses.
We use the average probability of correct classification Pcc as
a performance measure, which is given as

Pcc =

|M|∑
q=1

P (M̂ = Mq|Mq)P (Mq), (12)

where P (M̂ = Mq|Mq) is the probability that the transmitted
modulation Mq is classified correctly, and P (Mq) = 1

|M| is
the a priori probability of Mq . For the proposed algorithm, it
can be expressed as

Pcc = EH

{ 1

|M|
|M|∑
q=1

∫
Rq

p(κ̂|Mq, σ
2
w,H)dκ̂

}
, (13)
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where EH{·} is the expectation operation with respect to
the random channel matrix H, and Rq = {κ̂ ∈ C2Nt :
p(κ̂|Mq, σ

2
w,H) ≥ p(κ̂|Mp, σ

2
w,H) ∀q 	= p}. Unfortunately,

(13) is analytically intractable; however, it can be evaluated
numerically.

B. Classification with Blind Channel Estimation
In practical scenarios involving AMC, no cooperation be-

tween the transmitter and receiver is possible; thus the channel
matrix is unknown to the receiver and needs to be estimated
blindly. In this work, we employ a blind channel estimation
strategy consisting of two steps [3]. First, an independent
component analysis (ICA) method is used to estimate the
channel matrix blindly up to a phase offset matrix. Then, the
phase offset corresponding to each transmit signal stream is
estimated for each hypothesis Hq .

Independent Component Analysis
The term ICA refers to a family of computational methods that
are employed to blindly separate linear mixtures of statistically
independent random processes into their individual compo-
nents. Since the received signal for a spatially multiplexed
system consists of a linear mixture of independent transmit
symbol streams and noise, the ICA framework proves itself to
be a useful tool for blind estimation and compensation of the
channel matrix. Here, we employ the joint approximate diago-
nalization of eigen-matrices (JADE) algorithm proposed in [9]
to form pre-estimates of the channel matrix H̃ and the transmit
symbol streams s̃[k]. Note that like many ICA algorithms,
JADE is able to estimate the channel matrix and separate the
independent signal components up to a phase rotation. Thus,
the transmit signal vector, s̃[k] = (H̃†H̃)−1H̃†r[k], separated
by JADE, contains phase offsets that need to be estimated and
compensated for prior to feature estimation and classification.

Estimation of the Phase Offsets
For the estimation of the phase offsets in s̃[k], we use the
algorithm in [10]. Under hypothesis Hq , the phase offset
estimate corresponding to the nt-th transmit symbol stream
is

ϕ̂nt(q) =
1

Q
arg

(
μ(Q,Q)
q

N∑
k=1

s̃nt [k]
Q
)
, (14)

where Q is the modulation order for phase-shift-keying (PSK),
while it equals four for quadrature amplitude modulations
(QAM).

The phase corrected channel estimate under hypothesis Hq

is expressed as
Ĥq = H̃Φ̂q, (15)

with

Φ̂q =

⎡
⎢⎣

exp{−jϕ̂1,(q)} . . . 0
...

. . .
...

0 . . . exp{−jϕ̂Nt,(q)}

⎤
⎥⎦ . (16)

The classification is performed as described in Section III-A,
with the asymptotic likelihood function evaluated by using
the estimated channel matrix Ĥq for each hypothesis. The
proposed classification algorithm is summarized as follows:

IV. SIMULATION RESULTS
In the simulations, the number of transmit antennas was

set to Nt = 2. Unless otherwise mentioned, the observation
length was N = 1000. For each SNR value, 2000 Monte Carlo

Proposed algorithm

1: Input: Receive signal r[k] and noise variance σ2
w

2: Form the pre-estimates of the channel matrix H̃ and the
transmit signal s̃[k] using JADE

3: for each hypothesis Hq do
4: Estimate phase offset Φ̂q using (14) and (16)
5: Estimate the channel matrix Ĥq using (15)
6: Estimate the transmit symbols ŝ[k] using (4)
7: Estimate the feature vector κ̂ using (2) and (3), with

the moments replaced by their estimates
8: Calculate Σq,σ2

w ,Ĥq
using (9) and (10), with H replaced

by Ĥq

9: Evaluate the likelihood function p(κ̂|Mq, σ
2
w, Ĥq)

using (6), with Σq,σ2
w ,Hq

replaced by Σq,σ2
w,Ĥq

10: end for
11: Output: Choose M̂ = argmaxMq∈M p(κ̂|Mq, σ

2
w, Ĥq)
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Fig. 1. Performance of the proposed algorithm for Nt = 2 and Nr = 4, 6,
with perfect channel knowledge and blind channel estimation, respectively.
For the case of perfect channel knowledge, both simulations and theoretical
results are presented.

trials were used to calculate Pcc. The set of modulations was
chosen as M = {BPSK,QPSK, 8− PSK, 16−QAM}.

Performance evaluation of the proposed algorithm
Fig. 1 shows the classification performance of the proposed al-
gorithm for Nr = 4 and 6 with perfect channel knowledge and
blind channel estimation, respectively. Both simulation and
theoretical results, with the latter calculated by numerically
evaluating (13), are displayed in the case of perfect channel
knowledge. These results are in agreement, which indicates
the validity of the asymptotic Gaussian approximation for
the likelihood function. It can be noticed that using blind
channel estimation leads to a performance loss of about 2 dB
when compared with the case of perfect channel knowledge,
at Pcc = 0.9. As expected, the classification performance
increases as Nr increases.

The observation length N is also a significant parameter
that affects the classification performance. In Fig. 2, the
performance of the proposed algorithm with blind channel
estimation is shown for Nr = 4 and different values of N .
As expected, an improved performance is achieved with an
increased number of observed symbols. Simulations were also
run to investigate the performance of the proposed algorithm
with blind channel estimation for the set of modulations
M = {BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM}. Results
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Fig. 2. Performance of the proposed algorithm for Nt = 2 and Nr = 4
with different observation lengths and blind channel estimation.
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Fig. 3. Performance of the proposed algorithm for Nt = 2 and Nr = 4
with perfect channel knowledge and blind channel estimation, when compared
with ALRT and HLRT, respectively.

showed that for N = 1000, a 3 dB SNR increase is required
to reach Pcc = 0.9 when 64-QAM is additionally considered,
regardless of the antenna configuration. Furthermore, it was
observed that in order to attain Pcc = 0.9 at the same SNR,
an increase in the number of symbols to N = 6000 is needed.

Comparison with ALRT and HLRT
Fig. 3 compares the performance of the proposed algorithm
(perfect channel knowledge and blind channel estimation
cases) with the ALRT and HLRT algorithms proposed in
[3], respectively. It can be seen that ALRT achieves Pcc =
0.9 at about −4 dB SNR with perfect channel knowledge,
while HLRT attains this performance at −1.5 dB SNR with
blind channel estimation. Moreover, our proposed algorithm
requires −2 dB SNR and −0.5 dB SNR with perfect channel
knowledge and blind channel estimation, respectively. The
performance of the proposed algorithm with perfect channel
knowledge is about 2 dB lower when compared with ALRT,
whereas the performance loss of the proposed algorithm with
blind channel estimation compared with HLRT is only about
1 dB. The degradation in performance is expected since both
ALRT and HLRT use the likelihood function of the receive
signal for discrimination, whereas the proposed algorithm
employs only the fourth-order cumulants.

However, the complexity of the proposed algorithm is sig-
nificantly lower. The evaluation of the log-likelihood function
employed in both ALRT and HLRT, which essentially deter-
mines their computional complexity, requires NrNmNt

q (Nt+

1)+2 complex additions, NmNt
q (Nr(Nt+1)+1)+1 complex

multiplications, NmNt
q exponentiations, and N+1 logarithms,

with mq as the modulation order under hypothesis Hq . On
the other hand, for the calculation of p(κ̂|Mq, σ

2
w,Hq), only

26
3 N

3
t + 4N2

t (3 + Nr) + Nt(6N − 20
3 ) complex additions,

26
3 N

3
t + 30N2

t + Nt(
22
3 + 6N) complex multiplications, and

one exponentiation are required. For example, for Nt = 2,
Nr = 4, and N = 1000 symbols, the required number
of additions and multiplications is respectively reduced to
0.32% and 1.67% of that needed by the log-likelihood function
of ALRT and HLRT. Furthermore, only one exponentiation
and no logarithms are required. It should be noted that the
additional computational cost arising due to blind channel
estimation is the same for both HLRT and the proposed
algorithm with blind channel estimation, as both apply the
JADE algorithm to estimate the channel; thus, the difference in
the computational cost remains the same in the blind context.

V. CONCLUSION

A novel feature-based algorithm is proposed for AMC in
spatially multiplexed MIMO systems. Fourth-order cumulants
are used as discriminating features and the classification is
based on an LRT using the asymptotic likelihood function
of the feature vector estimate. The results show that the
algorithm achieves a performance close to that of ALRT (with
perfect channel knowledge) and HLRT (with blind channel
estimation) while exhibiting a significantly lower computa-
tional complexity. Thus, the proposed algorithm is applicable
in time-critical implementations like cognitive radios. Ongoing
work is carried out by our group to study different higher-order
feature combinations for classification; comparative results
will be presented in future work.
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