

On the Transmission Capacity of Wireless Multi-Channel Ad Hoc Networks with local FDMA scheduling

Jens P. Elsner, Ralph Tanbourgi, Friedrich K. Jondral ICUMT, Moscow, October 18, 2010

Communications Engineering Lab Prof. Dr.rer.nat. Friedrich K. Jondral

Overview

On the Transmission Capacity of Wireless Multi-Channel Ad Hoc Networks with local FDMA scheduling

Wireless Multi-Channel Ad Hoc Networks: Motivation

Every nodes has limited RF bandwidth: multi-channel networks are necessary.

Target platform
Ettus Research III USRP2 OF RF1 OF RF2
e.g. USRP2

Requirements

- Infrastructureless communication between arbitrary nodes
- High robustness against external interference
- High number of nodes

 Requirements call for multi-channel ad hoc networks with a flexible FDMA component

Wireless Multi-Channel Ad Hoc Networks: Properties

Multi-channel ad hoc networks substantially differ from single channel networks.

Single channel network

- PHY: More bandwidth is better
- MAC: CSMA/MACAW/IEEE 802.11 ...
- Extensive research body available

B

Multi-channel network

- PHY: How to choose the bandwidth of a single channel?
- MAC: CSMA and derivatives not possible, different solutions needed
- Up until now low relevance in applications, less extensive research body

Multi-Channel Ad Hoc Networks: Research question

What can be gained by local FDMA in ad hoc networks?

Fundamental limits / system design

- What is the optimal split for the operation bandwidth / what is the optimum system bandwidth?
- Which number of nodes can be supported?
- What can be gained by scheduling in the communication range in ad hoc networks?

2

Stochastic geometry offers a possibility to describe ad hoc networks analytically.

System model

- Node positions of interfering transmitters are described by a homogeneous Poisson point process (PPP).
- The PPP model offers analytical tractability and creates a homogeneous interference field.
- Metric is Shannon outage capacity; Receiver is assumed to work above an SINR threshold; Interference is AWGN
- Reference connection (cf. Slivnyak's Theorem) describes the whole network.

Possible statements

- Influence of parameters such as bandwidth, path loss exponent, node density, transmission range ...
- Comparison of protocol strategies such as DSSS-CDMA, FH-CDMA, SIC, FDMA with scheduling etc.
- Model averages node positions, if a PPP is a realistic assumption has to be decided on case to case basis

S. Weber, J. Andrews, N. Jindal, *An overview of the transmission capacity of wireless networks,* submitted to IEEE Transactions on Communications, March 2010, under revision, arXiv:0809.0016v4

Multi-channel model

Outage probability

$$q_m(\lambda_m) = \mathbb{P}\{B_m \log_2(1 + \text{SINR}) \le R_m\}$$

Transmission Capacity

$$c_m(q_m) = \lambda_m(q_m)(1 - q_m)$$
$$c(\epsilon) = \sum_{m=1}^{M} c_m(\epsilon), \epsilon \in (0, 1)$$

$$\rho$$
: transmission powerr: communication distance α : path loss exponent $\eta_m = N_0 B_m$: noise λ_m : interferer density λ_m : interferer positions q_m : outage probability $B_m = B/M$: bandwidth R_m : transmission ratec/c_m: Transmission Capacity

Influence of parameters for a single channel

Multi-channel model

$$\begin{aligned} & \textbf{Outage probability} \\ & q_m(\lambda_m) = \mathbb{P}\{B_m \log_2(1 + \text{SINR}) \le R_m\} \\ & = \mathbb{P}\{\underbrace{\text{SINR}^{-1}}_{Y_m} > \underbrace{\frac{1}{2^{\frac{R_m}{B_m}} - 1}}_{=:1/\beta}\} \end{aligned}$$

Multi-channel model

$$\begin{aligned} & Outage \ probability\\ & q_m(\lambda_m, R_m) = \mathbb{P}\{Z_{\alpha} > (\pi r^2 \lambda_m)^{-\frac{\alpha}{2}} (\underbrace{\frac{1}{2^{\frac{R_m}{B_m}} - 1} - \frac{N_0 B_m}{\rho r^{-\alpha}}}_{\theta_m})\}\\ & q_m(\lambda_m) = \overline{F}_{Z_{\alpha}}((\pi r^2 \lambda_m)^{-\frac{\alpha}{2}} \theta_m) & \theta_m \end{aligned}$$

Optimum split of operation bandwidth B.

$$\begin{array}{l} \textbf{Optimization problem}\\ M_{\text{opt}} := \mathop{\arg\min}_{M} q_m(\lambda_m, R_m) \end{array}$$

Optimum split of operation bandwidth B.

In interference limited networks, optimum split of operation bandwidth B depends on α only.

N. Jindal, S. Weber, J. Andrews, Bandwidth partitioning for Ad Hoc networks, IEEE Transactions on Communications, Aug 2008

Multi-Channel Ad Hoc Networks: Local FDMA

Neighbors in communication range r use different channels.

Local FDMA in ad hoc networks

Brooks' theorem

 Node coloring with M colors possible, if no node has more than M neighbors.

R. L. Brooks, On colouring the nodes of a network, Mathematical Proceedings of the Cambridge Philosophical Society, Apr 1941

Multi-Channel Ad Hoc Networks: Local FDMA

When is locally orthogonal transmission possible on a network scale with high probability?

Network is limited to K nodes.

Network orthogonalization

$$P\{\max\{N_1, N_2, ..., N_K\} \le M - 1\} > 1 - \epsilon_o$$

$$1 - \epsilon_o(M) < (\sum_{i=0}^{M-1} \exp(-\lambda_n) \frac{\lambda_n^i}{i!})^K$$
$$= \Phi(M, \lambda_n)^K$$
$$M \ge \Phi^{-1} ((1 - \epsilon_o)^{\frac{1}{K}}, \lambda_n)$$

 $\lambda_n = \pi r^2 \lambda$: Mean number of neighbors

K. Briggs, L. Song, T. Prellberg, A note on the distribution of the maximum of a set of Poisson random variables, preprint, http://front.math.ucdavis.edu/0903.4373, March 2009

Multi-Channel Ad Hoc Networks: Local FDMA

When is locally orthogonal transmission possible on a network scale with high probability?

K. Briggs, L. Song, T. Prellberg, A note on the distribution of the maximum of a set of Poisson random variables, preprint, http://front.math.ucdavis.edu/0903.4373, March 2009

Influence of parameters in multi-channel model

Local FDMA: Results

Local FDMA: No analytical solution for SIR distribution, lower and upper bounds needed.

Local FDMA: Results

Local FDMA scheduling lowers outage probability.

Figures for $R_m/B = 0.1$, $\lambda_n = 5$, $\alpha = 4$ and r = 10

CEL

Local FDMA: Results

Local FDMA: Network orthogonalization dominates number of channels.

Insights

- Optimum number of channels now depends on λ
- High gains possible (here: factor 1.35 - 13)

Local FDMA: Comparison with SIC

FDMA vs. SIC: Local FDMA performs better, especially for low node densities.

SIC model cf. Weber et al., *Transmission Capacity of Wireless Ad Hoc Networks with Successive Interference Cancelation*, IEEE Transactions on Information Theory, August 2007

CEL

On-going research

Algorithms for channel assignment in ad hoc networks and practical aspects.

Discussion / Q&A

Further questions, feedback appreciated: jens.elsner@kit.edu

