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Abstract—We present a stochastic model for analyzing the
performance of multiple-input multiple-output (MIMO) diversity
in a downlink heterogeneous cellular network. Multi-antenna re-
ceivers are assumed to perform maximal-ratio combining (MRC).
We consider interference-blind (IB) MRC and interference-aware
(IA) MRC, where the latter takes the interference power at
each antenna into account. Using tools from stochastic geometry,
we derive the coverage probability for both types of MRC as
a function of various tier-specific system parameters, including
the number of base station transmit antennas in each tier. The
model is then used to compare the performance of IB-MRC and
IA-MRC. One important insight is that IA-MRC becomes less
favorable than IB-MRC in a transmit-diversity system due to a
larger interference correlation across receive antennas.

Index Terms—MIMO, space-time coding, maximal-ratio com-
bining, coverage probability, Poisson point process.

I. INTRODUCTION

One way to face the steadily increasing rate demands in

downlink cellular systems is adding more antennas to both

base stations (BSs) and user devices, and using multiple-

input multiple-output (MIMO) techniques [1]. MIMO schemes

can be roughly divided into open-loop and closed-loop based.

Many works on MIMO cellular networks have been focusing

on closed-loop schemes, such as spatial-multiplexing or multi-

user MIMO, showing that tremendous gains can be harvested

when channel state information is available at the transmitter

(CSI-T). However, CSI may not always be available/reliable

in practice and one has to resort to open-loop MIMO schemes

in this case. For instance, in 3GPP LTE, transmission mode

2 is used for transmit-diversity with space-frequency block

codes over two or four antennas [2]. Besides, mobile devices

typically have space/complexity limitations per design, thereby

often not allowing more than two antennas and requiring

only simple linear combining schemes. One such combining

scheme is maximal-ratio combining (MRC) [3], which offers

an acceptable trade-off between performance and complexity,

and is therefore ubiquitously found in multi-antenna receivers.

There exist two types of MRC, namely interference-blind

(IB) and interference-aware (IA) MRC. The former —and

mostly considered— ignores the different interference powers

at the receive (Rx) antennas at the combining stage, while the

latter takes them into account though still treating interference

as white noise. Measuring the per-antenna interference power

can be done within the channel estimation phase. Both types of

MRC are well-understood for networks with fixed geometry,
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see for instance [3], [4], and recently also for ad hoc networks

[5]–[8]. IA-MRC was studied in [9] for single-tier cellular

networks with one transmit (Tx) antenna.

Unfortunately, analyzing MIMO diversity in the context of

heterogeneous cellular networks (HetNets) is difficult due to

the deployment of multiple tiers, limited site-planning, etc.

[10]. In particular, spatial interference correlation across Rx

antennas, which is known to have a detrimental effect on di-

versity combining schemes, is difficult to characterize. In order

to properly assess the performance of MRC in HetNets under

different MIMO settings, a realistic model and meaningful

analysis covering the above aspects is hence necessary. This is

the main motivation of this work. In this paper, we study the

coverage performance of a downlink MIMO heterogeneous

cellular system, where mobile receivers employ IB-MRC or

IA-MRC. Our main contributions are summarized below.

Analytical Model: We develop a tractable stochastic model

for downlink MIMO diversity with orthogonal space-time

block codes (OSTBCs) and IB-MRC/IA-MRC in Section III.

The model captures relevant tier-specific parameters, such as

BS density and Tx power, path loss exponent, and number of

Tx antennas. We derive the coverage probability for both types

of MRC, while for IA-MRC we focus on two Rx-antenna case.

Design Insights: In a typical three-tier scenario with multi-

ple Tx antennas at the BSs and IB-MRC, the gain of doubling

the number of Rx antennas is roughly 2.5 dB at practical

target coverage probabilities around 80%. For IA-MRC, the

corresponding gain is around 3.6 dB. Besides, adding more

Tx antennas has only a minor impact on the performance of

IA-MRC; the coverage probability gain when adding a second

Tx antenna is less than 5%. Relative to IB-MRC, IA-MRC

improves the coverage probability by roughly 1.5% for the

single Tx-antenna case, while this relative gain decreases to no

more than 1% when Alamouti space-time coding is performed

over two Tx antennas. This loss in relative performance is due

to the fading-averaging effect of transmit diversity, which in-

creases with the number of Tx antennas. Although interference

power estimation required by IA-MRC can usually be realized

with acceptable effort, this result suggests that IA-MRC is less

favorable than IB-MRC in a MIMO HetNet with Tx diversity.

II. SYSTEM MODEL

A. Network Geometry and User Association

We consider a K-tier HetNet in the downlink with BSs

irregularly scattered in the plane, see Fig. 1. We model the

irregular BS locations in tier k by an independent stationary

planar Poisson point Process (PPP) Φk with density λk. We



Fig. 1. Example: Downlink HetNet with K = 2. Tier-1 (macro) BSs have 4
antennas Tier-2 (small-cell) BSs have 2 antennas. Typical user has 2 antennas.

denote by Φ , ∪K
k=1 Φk the entire set of BSs. The spatial

Poisson model is widely-accepted for analyzing (multi-tier)

cellular networks, see for instance [11], [12]. All BSs in tier

k transmit an OSTBC using Mk Tx antennas. Similarly, we

assume that mobile receivers (users) are equipped with N Rx

antennas. The users are independently distributed on the plane

according to some stationary point process. By Slivnyak’s

Theorem [13] and due to the stationarity of Φ, we can focus

the analysis on a typical user located at the origin o ∈ R
2.

At the typical user, the long-term power received from a tier

k BS located at xi ∈ Φk is Pk‖xi‖
−αk , where Pk is the BS

Tx power in tier k, which is equally divided across all Mk

Tx antennas, and ‖ · ‖−αk is the distance-dependent path loss

with path loss exponent αk > 2. We assume independent and

identically distributed (i.i.d) frequency-flat Rayleigh fading.

Users are assumed to associate with the BS providing the

strongest average received power. For the typical user, the serv-

ing BS is hence the one maximizing Pk‖xi‖
−αk . Without loss

of generality, we label the location of this BS by xo and denote

by y , ‖xo‖ its distance to the typical user. For convenience,

we define Φo
, Φ \ {xo} (similarly, Φo

k , Φk \ {xo}), i.e.,

the set of interfering BSs. From the association rule discussed

above it follows that, given y = y and that the serving BS is

from tier ℓ, Φo
k is a homogeneous PPP on R

2 \b(0, dk), where

dk = P̂
1/αk

k y1/α̂k with P̂k , Pk/Pℓ and α̂k , αk/αℓ.

It will be useful in the later analysis to know the probability

that a user associates with a certain tier k as well as the

conditional probability density function (PDF) of the distance

to the serving BS, which are given in the next lemma.

Lemma 1 (Association Probability and Distance PDF [14]).

A user associates with the ℓ-th tier with probability

Aℓ = 2πλℓ

∫ ∞

0

y exp

(

−π

K∑

k=1

λkP̂
2/αk

k y2/α̂k

)

dy. (1)

The PDF of the distance y , ‖xo‖ to the serving BS, given

that it belongs to tier ℓ, is

fy(y) =
2πλℓy

Aℓ
exp

(

−π
K∑

k=1

λkP̂
2/αk

k y2/α̂k

)

, y ≥ 0. (2)

B. OSTBC MIMO Signal Model

All BSs of the k-th tier use an (Mk, Tk, rk)-OSTBC, where

Tk ≥ 1 is the codeword length and rk ∈ (0, 1] is the code rate;

Tk can be seen as the number of slots (number of channel uses)

for conveying Sk = Tkrk symbols using Mk Tx antennas. For

analytical tractability, we shall consider only power-balanced

(Mk, Tk, rk)-OSTBCs, i.e., having the property that exactly

Sk symbols are transmitted, or equivalently that Sk ≤ Mk Tx

antennas are active, in every slot of the codeword. This will

allow us to assign a constant power load of Pk/Sk to every

symbol-antenna pair. Practical examples of balanced OSTBCs

are (1, 1, 1) (single-antenna), (2, 2, 1) (Alamouti), (4, 4, 1/2),
and (4, 4, 3/4), see [15], [16] for instance. We use the notation

vi,τ ∈ {0, 1}Mk to indicate which Tx antennas of BS i are

active in slot τ , i.e., the m-th entry of vi,τ is equal to one if

Tx antenna m is active and zero otherwise.

Assume for the moment that the typical user associates with

the ℓ-th tier. It will then be served by an (Mℓ, Tℓ, rℓ)-OSTBC.

The interference-plus-noise corrupted received signal at the

typical user in slot τ ∈ {1, . . . , Tℓ} can then be expressed by

yτ = Ho co,τ +

K∑

k=1

∑

xi∈Φo
k

Hi ci,τ + nτ , (3)

where

• Hi ∈ C
N×Mk is the channel fading matrix between the

i-th BS of the k-th tier and the typical user. The elements

of Hi, denoted by hi,nm, are CN(0, 1) distributed and

remain constant over one codeword period. We assume

that E[hi,nmh∗j,uv] = 0 unless i = j, n = u, and m = v.

• ci,τ ∈ C
Mk are the space-time coded symbols of the

i-th BS sent over the Mk Tx antennas in slot τ . We

assume E
[
ci,τc

H
j,τ

]
= 0 for all i 6= j and E[ci,τ ] = 0

element-wise. Furthermore, it is reasonable to assume

E[ci,τc
H
i,τ ] =

Pk

Sk‖xi‖
αk

diag(vi,τ ), where diag(vi,τ ) is a

diagonal matrix with entries vi,τ . The latter follows from

the balanced-power property of the considered OSTBCs.

• nτ ∈ C
N is a vector describing the Rx noise with

independent CN(0, σ2) distributed entries.

Upon receiving all Tℓ code symbols of the desired codeword

to be decoded, the typical user stacks the vectors y1, . . . ,yTℓ

to form the new vector

ȳ =







Ho co,1

...

Ho co,Tℓ






+

K∑

k=1

∑

xi∈Φo
k







Hi ci,1

...

Hi ci,Tℓ







︸ ︷︷ ︸

īi

+







n1

...

nTℓ






, (4)

where īi ∈ C
NTℓ is the interference signal from the i-th

BS received over the entire codeword period. With CSI-R,

ȳ is linearly processed using MRC to form the final decision

variable. Two types of MRC are considered, which differ in

the amount of CSI needed. Moe specifically, IB-MRC requires

knowledge of Ho, while IA-MRC additionally needs to know

the interference-plus-noise power at each Rx antenna. The

following lemma will be useful in the later analysis.



Lemma 2 (Gaussian Matrices). Let the matrix X(u) ∈ C
v×w

have u ≤ vw CN(0, 1)-distributed entries and vw − u zeros.

Then ‖X(u)‖2F is Erlang distributed with CDF

P(‖X(u)‖2F ≤ θ) = 1− e−θ
u−1∑

j=0

θj

j!
. (5)

Let hi,n = [hi,n1, . . . , hi,nMk
] be the n-th row of Hi. Then,

the interference power in slot τ (we shall drop this index in

the following) measured at the n-th Rx antenna, averaged over

the interfering code symbols ci, is

In = Eci










K∑

k=1

∑

xi∈Φo
k

hi,nci









K∑

k=1

∑

xi∈Φo
k

hi,nci





H





(a)
=

K∑

k=1

∑

xi∈Φo
k

hi,nE
[
cic

H
i

]
hH
i,n

(b)
=

K∑

k=1

∑

xi∈Φo
k

Pk

Sk‖xi‖αk
hi,ndiag(vi)h

H
i,n

=

K∑

k=1

∑

xi∈Φo
k

Pk

Sk‖xi‖αk
‖hi,n(Sk)‖

2
F , (6)

where (a) follows from the independence between the ci across

BSs and (b) follows from the correlation properties of the ci.

Remark 1 (Feasibility of Interference Power Estimation).

When the set of active antennas of interfering BSs changes

in every slot τ , In varies unpredictably from slot to slot.

This is the case when Sk < Mk. Unfortunately, such rapid

variations over τ are imperceptible to CSI estimation since the

latter is usually designed to track channel-fading variations,

which happen on a larger time scale. However, when full-rate

OSTBCs are used (rk = 1 for all k), In is identical across

τ . In that case, the receiver can obtain knowledge of In with

acceptable complexity, e.g., by estimating it once within one

frame using techniques from [17], [18].

III. COVERAGE PROBABILITY ANALYSIS

We now study the downlink performance at the typical user

for both IB-MRC and IA-MRC. As explained in Remark 1,

IA-MRC is practical only for full-rate OSTBCs (rk = 1 for all

k). A common way for studying the performance of diversity-

combining techniques is to analyze the post-combiner signal-

to-interference-plus-noise ratio (SINR). The specific form of

the SINR depends on the considered scheme and will be

derived in Sections III-A and III-B.

Definition 1 (Coverage Probability Pc). The coverage proba-

bility at the typical user is defined as

Pc , P (SINR ≥ T ) (7)

for a coding and modulation specific threshold T > 0.

The Pc can be interpreted as the SINR distribution at the

typical user, or alternatively as the average fraction of users

in the network covered by an SINR no less than T [14].

A. MIMO Diversity with interference-blind MRC

An extremely useful property of OSTBCs is that the MIMO

input-output relation, i.e., (4), can be reduced to parallel

SISO channels [19]. At the typical user, having knowledge

of Ho, this is achieved by performing the linear combination
∑N

n=1

∑Mℓ

m=1 h
∗
o,nmAH

nmȳ + ho,nmBT
nmȳ∗, where Anm and

Bnm are the dispersion matrices describing the OSTBC em-

ployed in the serving tier, see [20], [21] for further details.

The resulting equivalent channel model allows treating the

detection of each of the Sℓ information symbols encoded in

the current codeword separately. The corresponding SINR at

the symbol decoder can then be expressed as

SINRℓ(y) =

Pℓ

Sℓy
αℓ
‖Ho‖

2
F

∑K
k=1

∑

xi∈Φo
k
Ii,eqv + σ2

, (8)

where Ii,eqv is the interference power from the i-th BS in the

equivalent channel model. Ii,eqv is statistically the same for

all Sℓ symbols. Thus, focusing on an arbitrary symbol, i.e.,

considering a single arbitrary column of Anm, Bnm, say anm,

bnm, the interference power Ii,eqv is

Ii,eqv = Varci

[
N∑

n=1

Mℓ∑

m=1

h∗o,nm

‖Ho‖F
aHnm īi +

ho,nm

‖Ho‖F
bT
nm ī∗i

]

. (9)

Note that the Rx noise statistics remain unaffected by the

linear combination [19], [21]. However, the distribution of

Ii,eqv is more complicated, particularly due to its dependence

on Ho. This was already observed in [5] for a similar MIMO

network model, where the authors also showed that ignoring

this dependence and assuming Ii,eqv to be Gamma distributed

yields a valid approximation. We shall thus follow the same

approach and assume Ii,eqv ≃ Pk

Sk‖xi‖
αk

‖Hi(Sk)‖
2
F with Ii,eqv

being independent from Ho. The following two facts support

this approximation:

• It can be shown that the approximation is moment match-

ing irrespective of the realization of Ho, i.e., EHi
[Ii,eqv] =

Pk

Sk‖xi‖
αk

EHi
[‖Hi(Sk)‖

2
F ] =

Pk

‖xi‖
αk

in (9).

• Whenever Mk = 1, it follows from [15] that the above

approximation becomes exact. In this case Ii,eqv is also

truly independent from Ho.

Lemma 3 (Interference Laplace Transform). Consider the

interference field I =
∑K

k=1

∑

xi∈Φo
k

Pk

Sk‖xi‖
αk

‖Hi(Sk)‖
2
F . Its

Laplace transform is given by

LI(s) = e
−π

K
∑

k=1

λkd
2

k

(

2F1

(

− 2

αk
,Sk,1−

2

αk
;−

sPk

Skd
αk
k

)

−1

)

. (10)

Proof: We write

E



exp



−s

K∑

k=1

∑

xi∈Φo
k

Pk

Sk‖xi‖αk
‖Hi(Sk)‖

2
F









(a)
=

K∏

k=1

E




∏

xi∈Φo
k

L‖Hi(Sk)‖2

F

(
sPk

Sk‖xi‖αk

)






P
IB
c = 2π

K∑

ℓ=1

NMℓ−1∑

m=0

(−1)mλℓ

m!

∫ ∞

0

y
dm

dsm

[

exp

(

−
sSℓT

SNRℓ(y)
− π

K∑

k=1

λkP̂
2/αk

k y2/α̂k
2F1

(

−
2

αk
, Sk, 1−

2

αk
;−

sT

Ŝk

))]

s=1

dy (12)

P
IA
c = 2π

K∑

ℓ=1

Mℓ−1∑

m=0

(−1)m+Mℓλℓ

m! Γ(Mℓ)

∫ ∞

0

∫ ∞

0

y z−1 dm dMℓ

dsm dtMℓ

[

exp

(

−
Mℓ

SNRℓ(y)

(
s (T − z)+ + tz

)
)

× exp

(

−π

K∑

k=1

λkP̂
2/αk

k y2/α̂k

[

1 + Ψ

(
s (T − z)+

M̂k

,
tz

M̂k

,Mk, αk

)])]

s=1
t=1

dy dz, 1 ≤ Mk ≤ 2, N = 2 (20)

(b)
= exp

{

−π

K∑

k=1

λk

∫ ∞

dk

2r

(

1−
(

1 + sPk

Skr
αk

)−Sk

)

dr

}

,

(11)

where (a) follows from the independence of the Φo
k across k

and of the independence of the ‖Hi(Sk)‖
2
F across i, and (b)

follows from the probability generating functional (PGFL) for

PPPs, see [13]. Solving the integral yields the result

We now have the tools required to characterize the cov-

erage probability for IB-MRC. This task is addressed in the

following theorem.

Theorem 1 (Pc for Interference-Blind MRC). The coverage

probability P
IB
c for IB-MRC in the described setting is given

by (12) at the top of the page, where SNRℓ(y) , Pℓ y
−αℓ/σ2

and Ŝk , Sk/Sℓ.

Proof: See Appendix A.

The differentiation dm/dsm in (12) can be calculated us-

ing Faà di Bruno’s formula for higher-order derivatives of

composite functions [22]. While the outer function is simple

due to the exp-term, the inner function, more specifically

the 2F1

(

−2/αk, Sk, 1− 2/αk;−sT/Ŝk

)

expression, is more

involved. With [22], its derivative is obtained as

dm

dsm

[

2F1

(

−
2

αk
, Sk, 1−

2

αk
;−

sT

Ŝk

)]

s=1

=

(

−
T

Ŝk

)m
−2/αk Γ(Sk +m)

(m− 2/αk) Γ(Sk)

×2F1

(

−
2

αk
+m,Sk +m, 1−

2

αk
+m;−

T

Ŝk

)

. (13)

In dense deployments the performance is typically limited

by interference rather than noise [23]. In this case, one can set

σ2 = 0 ⇔ 1/SNRℓ(y) = 0. In addition, the path loss exponent

does not vary significantly across tiers in practice with typical

values around αk ≈ 3.7 [24]. When also the number of Tx

antennas is equal across tiers, the following corollary applies.

Corollary 1 (Special Case). In the absence of Rx noise (σ2 =
0) and with equal path loss exponents (αk = α) and the same

number of Tx antennas (Mk = M , Sk = S), PIB
c simplifies to

Pc =
NM−1∑

m=0

(−1)m

m!

dm

dsm

[

1

2F1

(
− 2

α , S, 1−
2
α ;−sT

)

]

s=1

. (14)

The coverage probability in (14) does not depend on the

BS densities λk and powers Pk, nor on the total number of

tiers K, which is consistent with the literature, see for instance

[12], [14]. Note that the first term m = 0 in (14) corresponds

to the coverage probability for the SISO case [25].

B. MIMO Diversity with interference-aware MRC

We now assume Mk ≤ 2 for all K tiers. This ensures

that the receiver can estimate the interference power with

acceptable complexity once within the current block/frame,

see Remark 1. In this case, we have Sk ≡ Mk. When

Mk ≤ 2, tier k uses either Alamouti space-time coding

(Mk = 2) or no space-time coding (Mk = 1). In both cases,

the interference power remains constant in each codeword slot.

Its value at the n-th antenna is given by (6). We assume that the

receiver perfectly knows the current per-antenna interference-

plus-noise power In + σ2 at each antenna, in addition to

knowing Ho. Interference is still treated as white noise.

In IA-MRC, the phase-corrected and channel-weighted re-

ceived signals are additionally scaled by the interference-plus-

noise power experienced at each antenna, thereby following

the original MRC approach from [3]. The linear combination

N∑

n=1

Mℓ∑

m=1

h∗o,nm

In + σ2
AH

nmȳ +
ho,nm

In + σ2
BT

nmȳ∗, (15)

yields the equivalent channel model for IA-MRC. Note that

now, the interference-plus-noise power is factored in. Similar

to Section III-A, we focus again on an arbitrary symbol and

therefore consider an arbitrary column amn, bnm of Anm,

Bnm. The SINR for IA-MRC can then be expressed as

SINRℓ(y) =

Pℓ

Mℓ y
αℓ

(
∑N

n=1
‖ho,n‖

2

F

In+σ2

)2

∑K
k=1

∑

xi∈Φo
k
Ii,eqv +

∑N
n=1

‖ho,n‖2

F
σ2

(In+σ2)2

, (16)

where now Ii,eqv is

Ii,eqv = Varci

[
N∑

n=1

Mℓ∑

m=1

h∗o,nm

In + σ2
aHnm īi +

ho,nm

In + σ2
bT
nm ī∗i

]

. (17)

Using the orthogonality property of Anm,Bnm, see for

instance [15], we can rewrite (17) as

Ii,eqv =
Pk

Mk‖xi‖αk

N∑

n=1

‖ho,n‖
2
F

‖hi,n‖
2
F

(In + σ2)2
+

Zi,n

(In + σ2)2
, (18)
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Fig. 2. (a) Coverage probability P
IB
c for path loss exponents α1 = 3.76, α2 = 3.67, α3 = 3.5. Receiver noise is σ2

= −104 dBm. (b) Coverage probability
P

IA
c for α = 3.7, σ2

= 0, and M = 1, 2.

where Zi,n describes the part resulting from the non-zero

off-diagonal elements of the covariance matrix Eci
[̄iīi

H
i ]. It

can be shown that EHi
[Zi,n] = 0 irrespective of Ho. To

obtain a more tractable SINR expression, we hence ignore

the Zi,n term. After some simple algebraic manipulations, the

simplified SINR from (16) becomes

SINRℓ(y) =
Pℓ

Mℓ yαℓ

N∑

n=1

‖ho,n‖
2
F

In + σ2
. (19)

Remark 2 (SINR-Approximation). It follows by Jensen’s In-

equality [26] that the approximate SINR in (19) underestimates

the true SINR in (16). The resulting error, however, is barely

noticeable as confirmed by simulations, see Sec. IV.

Although the hi,n in (19) are mutually independent, the

interference terms In are correlated across the N Rx antennas

due to the common locations of interfering BSs. More specif-

ically, the expression in (19) is a sum of correlated random

variables exhibiting a complicated correlation structure. This

renders the characterization of the coverage probability of IA-

MRC for general number of Rx antennas N challenging. In

practical systems, however, the number of antennas mounted

on mobile devices is limited due to space/complexity limi-

tations, thereby often not exceeding N = 2 antennas. This

practically relevant case is addressed in the following theorem.

Theorem 2 (Pc for Interference-Aware MRC). The coverage

probability PIA
c for IA-MRC in the described setting with Mk ≤

2 is given by (20) at the top of the last page, where Ψ(·, ·, ·, ·)
is given by (32) and M̂k , Mk/Mℓ.

Proof: See Appendix B.

Compared to P
IB
c in (12), PIA

c is analytically more involved

due to the mathematical form of (19), which translates into the

convolution-type integration over z in (20). Nevertheless, the

expression in (20) can be evaluated with acceptable complexity

using semi-analytical tools, see for instance [8]. Moreover,

Ψ(·, ·, ·, ·) can be given in terms of the Gaussian hypergeo-

metric function, which reduces to elementary functions for

suitable αk. Besides, (20) covers the general case and the

expression can be further simplified for certain scenarios as

discussed next. The counterpart to Corollary 1 is given next.

Corollary 2 (Special Case). In the absence of Rx noise (σ2 =
0), and with equal path loss exponents (αk = α) and the same

number of Tx antennas (Mk = M ≤ 2), PIA
c reduces to

P
IA
c =

M−1∑

m=0

(−1)m+M

m! Γ(M)

∫ ∞

0

z−1

×
dm dM

dsm dtM

[
1

1 + Ψ (s (T − z)+, tz,M, α)

]

s=1
t=1

dz. (21)

The expression in (21) is less complicated than (20). When

the SINR threshold T is not large, the Ψ(s (T − z)+, tz,M, α)
term can be further simplified as shown next.

Corollary 3 (Small-T Approximation). When T is small, the

following approximation becomes tight

1 + Ψ

(
s (T − z)+

M̂k

,
tz

M̂k

,Mk, αk

)

≃ 2F1

(

−
2

αk
,Mk, 1−

2

αk
;−

s (T − z)+ + tz

M̂k

)

. (22)

The right-hand side of (22) may be easier to evaluate than

the original expression since the Gaussian hypergeometric

function is available in most numerical software programs.

Moreover, its higher-order derivatives with respect to both s
and t appearing in (20) can be evaluated fairly easily following

the same idea as in (13).



Remark 3 (Single-Tier, Single-Tx-Antenna). Setting K = 1
and M = 1, we recover the coverage probability result from

[9] for single-tier single-Tx-antenna cellular networks.

IV. DISCUSSION AND NUMERICAL EXAMPLES

We assume a typical three-tier HetNet setting (K = 3),

where BSs have densities λ1 = 4BS/km2, λ2 = 16BS/km2,

λ3 = 40BS/km2, and transmit powers P1 = 46 dBm, P2 =
30 dBm, P3 = 24 dBm. The dispersion matrices Anm, Bnm

are obtained using [15, Sec. 2.2.3].

We first focus on IB-MRC and consider a typical scenario

with M1 = 4, M2 = 2 (Alamouti), and M3 = 1 (no space-

time coding). The (4, 4, 3/4)-OSTBC from [16, 7.4.10] is

chosen for tier one. Fig. 2a shows the coverage probability

P
IB
c for IB-MRC and different number of Rx antennas N . It

can be seen that the theoretical expressions perfectly match the

simulation results. Furthermore, the simulation results for the

interference Gamma approximation explained in Section III-A

(Approx. Sim.) and for the exact case (Exact Sim.) are hardly

distinguishable, which is consistent with [5]. As expected,

increasing N improves P
IB
c since the typical user enjoys a

larger array gain. For operation points of practical relevance,

i.e. around 80% of covered users, the horizontal gap between

the curves in Fig. 2a is roughly 2.5 dB. For IA-MRC, this gain

is about 3.6 dB (verified through simulations).

Figure 2b shows the coverage probability P
IA
c for IA-MRC.

Here, we consider the interference-limited case (σ2 = 0)

with equal path loss exponents (αk = 3.7) and the same

number of Tx antennas (Mk = M ). Again, simulation results

and theoretical expressions (Corollary 2) are fairly close over

the whole T -range. It can be further observed that, for IA-

MRC, adding a second Tx antenna and performing Alamouti

space-time coding slightly improves performance only at low

T . This gain, about 4% in the practically relevant regime,

is comparable to the gain due to frequency-diversity based

resource allocation in HetNets with single Tx antenna [27].

Next, we compare the performance between IB-MRC and

IA-MRC for the same scenario as for Fig. 2b. In Fig. 3, the

relative coverage probability gain of IA-MRC over IB-MRC

is shown for M = 1 and M = 2 Tx antennas. In line with

the observations from [9] for single-tier single-Tx-antenna

cellular networks, the gain is insignificant (< 2% in this

example). In fact, IA-MRC becomes even less favorable over

IB-MRC when adding more Tx antennas. This due to the fact

that adding more antennas effectively averages out the fading

on the interfering channels, which implies that interference

power becomes even more correlated across Rx antennas.

Thus, with increasing similarity of the interference level across

Rx antennas, the performance of IA-MRC eventually becomes

equal to that of IB-MRC.

V. CONCLUSION

We presented a stochastic model for analyzing downlink

MIMO diversity with MRC at the receivers in heterogeneous

cellular networks. We showed that transmit diversity has
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Fig. 3. Relative coverage probability gain of IA-MRC over IB-MRC for
α = 3.7, σ2

= 0, and M = 1, 2.

a considerable impact on the relative performance of IB-

MRC and IA-MRC. Our results revealed that IA-MRC is

only slightly better than IB-MRC when multiple Tx antennas

are used. Future work may include extending the model to

incorporate also other linear combing schemes in combination

with transmit diversity and spatial multiplexing.

APPENDIX

A. Proof of Theorem 1

Applying the law of total probability and making use of

Lemma 1, we can express (7) by

Pc =

K∑

ℓ=1

Aℓ

∫ ∞

0

fy,ℓ(y)P (SINRℓ(y) ≥ T ) dy, (23)

where P (SINRℓ(y) ≥ T ) can be seen as the conditional Pc,

given ℓ, y. With Lemma 2, the conditional Pc is rewritten as

P (SINRℓ(y) ≥ T )

= P



‖Ho‖
2
F ≥

SℓT

Pℓy−αℓ





K∑

k=1

∑

xi∈Φo
k

Ii,eqv + σ2









(a)
=

NMℓ−1∑

m=0

(−1)m

m!
EY

[
(−1)mYme−Y

]

(b)
=

NMℓ−1∑

m=0

(−1)m

m!

dm

dsm

[

LY(s)
]

s=1
, (24)

where in (a) we define Y ,
SℓT

Pℓy
−αℓ

(
∑K

k=1

∑

xi∈Φo
k
Ii,eqv +

σ2) and (b) follows from the differentiation rule for Laplace

transforms. With Lemma 3, LY(s) can be obtained as

LY(s) = exp

(

−
sSℓT

SNRℓ(y)
− π

K∑

k=1

λkP̂
2/αk

k y2/α̂k

×
[

2F1

(

− 2
αk

, Sk, 1−
2
αk

;− sT
Ŝk

)

− 1
])

, (25)



where SNRℓ(y) , Pℓy
−αℓ/σ2 is the average signal-to-noise

ratio and Ŝk , Sk/Sℓ. De-conditioning on y and ℓ yields the

final result.

B. Proof of Theorem 2

Applying the law of total probability and making use of

Lemma 1 and (19), we can rewrite (7) as

Pc =

K∑

ℓ=1

Aℓ

∫ ∞

0

fy,ℓ(y)P (SINRℓ(y) ≥ T ) dy. (26)

Next, we focus on P (SINRℓ(y) ≥ T ), which after condi-

tioning on Φo, yields

EΦo [P(SINR1,ℓ(y) ≥ T − SINR2,ℓ(y)|Φ
o)]

= EΦo

[∫ ∞

0

P(SINR1,ℓ(y) ≥ T − z|Φo) fSINR2,ℓ(y)|Φo(z) dz

]

,

(27)

where we have defined

SINRn,ℓ(y) ,
Pℓ

Mℓyαℓ

‖ho,n‖
2
F

In + σ2
. (28)

Applying the same steps as in (24), the first term inside the

integral in (27) can be evaluated as

P(SINR1,ℓ(y) ≥ T − z|Φo)

=

Mℓ−1∑

m=0

(−1)m

m!

dm

dsm

[

exp

(

−
sMℓ(T − z)+

SNRℓ(y)

)

×
K∏

k=1

∏

xi∈Φo
k

(

1 +
s (T − z)+P̂ky

αℓ

M̂k‖xi‖αk

)−Mk
]

s=1

. (29)

Similarly, we have

fSINR2|Φo(z) =
d

dw

[

P (SINR2 ≤ w)
]

w=z

=
(−1)Mℓ

z Γ(Mℓ)

dMℓ

dtMℓ

[

exp

(

−
tMℓz

SNRℓ(y)

)

×

K∏

k=1

∏

xi∈Φo
k

(

1 +
tzP̂ky

αℓ

M̂k‖xi‖αk

)−Mk
]

t=1

. (30)

By Fubini’s Theorem, the expectation EΦo [·] can be moved
inside the integral over z in (27). By Leibniz integration rule
for infinite integrals [22], the differentiations dm/dsm in (29)
and dMℓ/dtMℓ in (30) can be moved outside EΦo . Since the
Φo

k are independent, we then have

E





K
∏

k=1

∏

xi∈Φo
k

(

1 +
s (T − z)+P̂ky

αℓ

M̂k‖xi‖αk

)

−Mk
(

1 +
tzP̂ky

αℓ

M̂k‖xi‖αk

)

−Mk





= exp

{

−π

K
∑

k=1

λkP̂
2/αk

k y
2/α̂kΨ

(

s

M̂k
(T − z)+, tz

M̂k
,Mk, αk

)

}

,

(31)

where M̂k , Mk/Mℓ and

Ψ(a1, a2, p, q) =

∫ ∞

1

1−
[(

1 +
a1
uq/2

)(

1 +
a2
uq/2

)]−p

du. (32)

Combining (26) – (31) yields the result.
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