
Wireless Networks In-the-Loop:
Speeding up GNU Radio development

Final Report for the Software Defined Radio Design Challenge 2012 at Wireless@Virginia Tech

Gerald Baier and Nico Otterbach
Karlsruhe Institute of Technology, Germany

{gerald.baier, nico.otterbach}@student.kit.edu

Abstract—Wireless Networks In-the-Loop can significantly cut
the time needed to develop a fully functional wireless communica-
tion system. By introducing a virtual RF front-end and a virtual
radio channel, which integrate seamlessly with already existing
software radio projects, simulations can be run in lieu or in
conjunction with real-world tests. The following pages describe a
solution and implementation for the GNU Radio SDR framework.

I. WHAT IS WIRELESS NETWORKS IN-THE-LOOP AND
WHY YOU WANT TO USE IT

While generally Software Defined Radios are very versatile
and allow a quick reconfiguration of devices, making test-
ing far easier compared to conventional radios, testing and
the whole development process is still too cumbersome and
could be enhanced significantly. One example for a typical
wireless system is depicted in figure 1. The whole wireless
network consists of multiple nodes, where each node has a
reconfigurable software radio part that communicates with the
RF hardware.

Figure 1. A typical SDR setup [1]

One possible solution to speed up the development of such
a system are Wireless Networks In-the-Loop (WiNeLo). The
idea behind WiNeLo is quite simple. The RF hardware and the
radio channel are being emulated by software. This is shown
in figure 2, where the RF hardware has been replaced by a
virtual RF interface and the radio channel is being simulated
by using a channel matrix. In order to increase the ease of
use of the whole setup a central Dispatch and Control Process
manages the whole system.

Figure 2. Basic architecture of Wireless Network In-the-Loop [1]

Since the virtual RF interface behaves identically to the
real RF Hardware the same software code base can be used
for both, the real-world testing (real mode) and a simula-
tion (virtual mode). This is a huge improvement over the
conventional development process where adjustments have to
be made to both the SDR as to the simulation environment.
WiNeLo also enables developers to run cheap tests entirely in
software, while a switch to the real mode is possible at every
moment. The typical workflow would then consist of running
a simulation or a real world test, evaluating the results and
making adjustments to the software component of the SDR
(see figure 3).

Figure 3. Development cycle with Wireless Networks In-the-Loop

WiNeLo can drastically reduce the time needed for devel-
oping a fully functional system, thereby making the lives of
developers easier while at the same time cutting costs.

This is one of the many reasons why researchers at our
department already worked on a concept of WiNeLo (see [1]
and [2]). Two research associates at our department suggested

that we could write an implementation of WiNeLo based on
GNU Radio [3]. GNU Radio was chosen as the software radio
framework due to the following reasons:

1) Our department has already used GNU Radio in a wide
scope, so it is the system with which we are the most
familiar with

2) GNU Radio is open source, which makes it possible to
alter any aspect of GNU Radio if the need exists

3) There is clean and clear interface between hardware and
software, making the replacement of the hardware part
easier

4) Its widespread use in academia will make our work
relevant and useful for a large number of people

To make the seamless switching between real-mode and
virtual mode possible, it is paramount that the actual RF
hardware can be replaced with our simulation framework at the
push of a button. This ensures that developers can really make
use of the coexistence and the synergy between simulation and
real world testing.

II. INITIAL THOUGHTS BEFORE KICK-OFF

We have already explained why GNU Radio was chosen.
The other thoughts that we had at the beginning of this projects
were the following:

In order to distribute the load of all the computation among
many computers we had a client-server structure in mind,
where the server is in charge of modeling the channels and
basic management tasks, while each client is responsible for
taking care of one or more nodes of the network.

Since we want to model a complete network with an
arbitrary number of nodes, one of the biggest issues is ensuring
that all nodes are synchronized and run at the same pace. This
is necessary, since the incoming signals from all connected
clients have to be overlaid in an exact manner to model
the behavior of a real radio channel. If some nodes work at
different symbol-rates interpolation is needed, or if nodes do
not transmit continuously zeros have to be inserted into the
data stream to ensure that the various streams stay coherent.
The reason for all nodes to consume and produce samples at
the same rate is simply that some nodes may adapt themselves
to the channel and the signals on the channels. So we cannot
have any nodes producing samples before every other node
has finished processing their current batch.

All of the above is directly related to the next relevant
point: granularity. Each node may have a certain requirement
how fast it needs to react to a changing channel or signals
on that channel. The simulation has to take this into account
by not working on more than a certain number of samples
at any given time. This basically translates into a buffer that
the simulation uses with a limited buffer size. Although at the
first look this seems to be a serious constraint, it is not that
a big a deal, since there is an inherent lag in all GNU Radio
flowgraphs due to the buffers between all the signal processing
blocks and the GNU Radio scheduler.

Last but not least, we envisioned that the hardware modeling
is done by having a distinct profile for an USRP and a

specific daughterboard. The long term goal being the modeling
of hardware that GNU Radio can use (for example: USRP
daughterboards [4], funcube dongle [5] and RTL-SDR [6]).
The hardware modeling was to be done either by the server
or by the clients, thereby providing an additional possibility
to distribute the load among many computers.

This would make it possible to simulate complete wireless
networks, regardless of what hardware the transmitters and
receivers use and in what kind of propagation environment
they are located.

III. IMPLEMENTATION AND RESULTS

A. Networking Framework

In order to take care of the client-server structure and
connectivity we decided to use the Python network engine
Twisted [7] due to the following reasons:

1) It provides all the network functionality that we need
and a high level of abstraction, which is a big time saver
compared to writing a custom network engine.

2) Twisted is event-driven which makes it useful for us,
since we cannot fully control when for example pack-
ages arrive or new connections get instantiated.

3) It is written in Python, hence it works quite smoothly in
conjunction with GNU Radio.

The biggest obstacle concerning networking was keeping the
various clients synchronized and allowing clients to dynami-
cally connect, disconnect and reconnect to the server. Twisted
proved to be very useful since it automatically calls certain
methods if a specific event occurs. These methods can be
easily customized to meet ones needs. We made heavy use
of this functionality to cope with dynamically connecting and
disconnecting clients during runtime.

B. Client-Server structure

The layout of our client-server structure can be seen in
figure 4. All the communication between the clients and the
server is being handled by Twisted. Note that in this figure
the client is in charge of hardware modeling, but with our
framework it is also possible that this is done by the server.

Figure 4. Client Server structure

Since the server is, thanks to Twisted, completely decoupled
from the clients’ GNU Radio flowgraphs, it does not need

GNU Radio as a dependency, which makes the deployment of
the server much easier. The only two relevant dependencies
are Numpy and Twisted.

The samples are collected and distributed from and to the
clients in the form of packages. The package size itself is
set by the server. Every client tells the server the maximum
size of a package it can cope with, the server then selects
the largest common packet size for transmission. The packet
size is directly proportional to the maximum time a client,
that needs to react to data on the channel, can tolerate. For
example, given a client that has to react within 10ms and if a
sample corresponds to 100µs, then the maximum packet size
is 100 samples per packet. The largest common size is then
used for all transmission.

There is also the gain provided by the load-balancing
capabilities of the client-server approach. The GNU radio
flowgraphs can be run on multiple machines and especially on
a different computer than the one acting as the server. Since
all the clients are connected to the server, general management
tasks can also be performed by the server.

C. Hardware Emulation

Getting an accurate model of existing hardware platforms
for GNU Radio proved to be too complex and time-intensive
for the contest. There are just to many variables and varieties
you have to take into account like modeling the analog to
digital converters, quantization noise or sampling jitter. Hence,
we opted to use a generic model which can simulate the
following non-idealities

1) Additive white Gaussian noise
2) IQ imbalance
3) Phase noise
4) Frequency offset

As a blueprint for this models we used the generic GNU radio
blocks created by Matt Ettus [8]. The hardware emulation can
either be done by the server or the clients in order to distribute
the load of this computationally expensive task. This has to be
set before runtime. However, the parameters of the hardware
emulation can be changed on-the-fly, even while a simulation
is running. Changing these parameters while a simulation is
running could be very useful for engineers to see if their
system still works correctly if they environment deteriorates.
It is also possible to use this for educational purposes to show
students the impact of various types of noise on a constellation
diagram.

D. Integration with GNU Radio

As mentioned previously one of our goals was a seamless
integration with already existing GNU Radio applications.
Therefore we decided that we needed sink/source blocks that
behave similarly to UHD sink/source blocks. This is also in
accordance with the loop philosophy demanding that switching
between simulation and real-world testing should be possible
at a moment’s notice without hampering the user with tasks
like migration etc. For the sink/sources blocks we decided to
make use of the newly introduced Python Blocks in GNU

Radio. Although the Python block feature is still considered
experimental and on average these blocks are slower compared
to their C++ equivalents, we used them due to the following
reasons:

1) The performance hit should not be too severe since
Python blocks make use of numpy which is heavily
optimized.

2) Data exchange between the Python blocks and the
Python Twisted application should be simple since they
are written in the same programming language

3) All the blocks have to do is pass samples from the GNU
Radio flowgraph to the Twisted application, no signal
processing is involved, so that performance should not
be an issue at all.

To further lower the learning curve for prospective users GNU
Radio Companion bindings were created. A screenshot of a
flowgraph making use of two WiNeLo source blocks can be
seen in figure 5. Switching from virtual mode to real mode
is done by simply replacing the source blocks with a UHD-
source block.

The whole configuration of the WiNeLo-source block is
shown in figure 6. The most important options are the server’s
IP address and its port, the maximum packet size supported
by this client and the parameters for the hardware emulation.
Callback methods were implemented so that these parameters
can be changed on-the-fly from within GNU Radio companion.
The client index is used to identify the clients, the client name
is only for convenience for users. The option start reactor is
required by Twisted. Only the last WiNeLo-source block that
is instantiated may start the reactor. Although this requires
the user to do this by hand, this was the only solution which
does not require custom patches to GNU Radio Companion.
The option “HW Emulation on client” sets whether the client
or the server is responsible for emulating the hardware. The
dialog for WiNeLo-sink blocks is identical.

E. Zero padding and synchronization

For an accurate timing behavior, it is important that the
samples of the different clients are overlaid coherently. As the
time in the simulation is based on the number of processed
samples, a continuous stream of samples is required from
every client. Therefore it is necessary to insert zeros into the
data stream if a client does not transmit at a certain point in
time.

Implementing zero padding was one of the most demanding
tasks in the whole project, but in the end a sophisticated and
accurate solution was found.

Against our initial considerations for zero padding we
finally opted to follow a completely different approach. Re-
cently support for timestamps and stream tags were added
to GNU Radio. These tags permit the transmission of data
at a preset time. Stream tags are messages that are asso-
ciated with a specific sample and can evaluated by GNU
Radio/UHD blocks. Since the majority of implementations of
TDMA/timing critical systems will most likely rely on these
methods, we decided to make use of the same functionality.

Figure 5. Screenshot of a typical GNU Radio Companion flowgraph, that makes use of two WiNeLo Source Blocks

Figure 6. Options of the WiNeLo-source block

Additionally this facilitates using our simulation framework in
conjunction with real-world testing, which is fundamental to
the seamless switching aspect of WiNeLo.

With our approach no overhead is produced for non-
timing critical applications, since the code responsible for zero
padding is only executed if needed.

In order to understand our implementation we have to dive
a little bit into stream tags in GNU Radio. There are three tags
that are of interest to us:

1) SOB - start of burst: Appears whenever a burst begins.
When this tag is detected, the USRP switches from IDLE
to transmission mode. The SOB tag is usually used together
with a timestamp tag that tells the USRP when it should start
transmitting. In this case, two tags are associated with one
sample.

2) Timestamp: The time carried by timestamps is given
in full and fractional seconds. The USRP uses an internal
counter to keep track of time. By comparing timestamps to
this counter, the USRP is able to transmit at a specific time.

3) EOB - end of burst: This tag is associated with the last
sample of a burst and therefore does not need an additional
timestamp. It is necessary for the FPGA in the USRP to go
to non-transmission mode.

With these tags, their associations to different samples and
the knowledge of the sample rate, it is possible to calculate the
correct number of zeros that have to be inserted into the stream
when a client is not transmitting. The principle is shown in
figure 7.

ZP ZP

TX 1

TX 2

 SOB 1

Timestamp 1

 SOB 2

Timestamp 2

EOB 1 EOB 2

Figure 7. Zero Padding with the help of timestamps

As soon as an EOB tag is detected, we know that zeros
have to be inserted. This is done one zero after another, until
an SOB together with a timestamp tag is detected (this marks

the end of the sequence of zeros).
After the detection of a new SOB timestamp the equivalent

offset in samples regarding the start of the simulation is
calculated. This is done with the help of the used sample rate,
which is necessary to convert the time given in seconds from
the timestamp into an offset of samples that will be used by
our simulation. The total number of zeros to be inserted is
now given by the just mentioned offset minus the number of
already processed samples since the simulation is running (this
is our elapsed virtual time, the elapsed time in our simulated
world and the equivalent to the internal counter/clock in the
USRP).

Thus, we are able to set up our virtual time base with a
maximum error of only one sample compared to real-world
behavior.

Now, since all of the clients run at the same pace and
produce new samples at the same rate, they share a common
clock. With this new virtual time base it is possible to simulate
real-time systems in non-real-time.

The principle we used for synchronization is shown in figure
8. The server overlays the streams sample by sample after it
has received a full package from every client.

(a) (b)

Figure 8. (a) unaligned packages received by the server; (b) packages after
synchronisation at the server

With our implementations of synchronization and zero
padding, it is now possible to simulate TDMA/real-time sys-
tems with a very high accuracy and in non-real-time.

F. Simulating the channel

The simulation of the channel itself is performed by the
server, which takes the signal from every transmitter that
reaches a certain receiver, applies the corresponding channel
impulse responses and does a summation of all signal to
get the total received signal. Due to the delay caused by
the channel impulse response, some samples of the previous
packages are needed for computing the signals at the receivers.
If we are dealing with a channel that changes with time,
the server is also in charge of switching the channel matrix.
All of these operations are done with the help of the Python
module Numpy, which resulted in a decent performance but
is probably still significantly slower than an implementation
in C++ or Fortran.

So far there are two possible ways how the server can deal
with connecting clients.

1) Dynamic Mode: In the dynamic mode the server accepts
connections from an arbitrary number of clients. The channel
matrix is completely random (the attenuation is Rayleigh-
distributed) and its size is automatically adjusted to the number
of connected clients. This is made possible by the event-
driven nature of Twisted, which makes it very easy to run
certain methods and functions as soon as a client connects or
disconnects. This mode can be used for quick trial and error
tests, due to the fact that it hardly requires any configuration
on the server side. The server can be configured to generate
a new channel matrix after a certain amount of samples. This
can be used to simulate fading in a time-variant channel.

2) Fixed Mode: In this mode the server loads a channel
matrix from file and waits until the appropriate number of
clients has connected. As soon as all clients have connected the
simulation starts. As in the dynamic case the server can load a
new channel matrix after N samples. The channel matrix is a
numpy array or a list of numpy arrays. This will make it easy
to use the simulation framework in conjunction with channel
impulse response obtained through measurements or try out
custom channel models (two-way propagation, AWGN, . . .).

IV. FURTHER WORK / OUTLOOK

Due to the limited time that we had on our hands and the
vast scope of a project like a complete simulation framework,
there still remain a lot of things to be done:

• Implementing more channel models would increase the
scope in which the simulation framework can be used
effectively

• The hardware modeling is still very basic and in an early
stage of development. What we imagine is to have a
separate model for every hardware that is available for
GNU Radio.

• Currently the server only works on one packet at a time.
We think that the network performance could be increased
by introducing queueing for the packages

• Implementing the channel matrix itself as a GNU Radio
flowgraphs would increase performance significantly and
would allow the use of custom GNU Radio blocks as a
channel model.

• Adding support for different sample rates at the clients.
• Using advanced features of Twisted could increase net-

work throughput.
• Converting the Python Blocks to C++ Blocks would

eliminate the need to use the experimental branch of GNU
Radio (Josh Blum’s repository).

• Support for absolute timestamps (simulation equivalent
for using a GPSDO with USRPs)

V. CONCLUSION

The last pages illustrated the usefulness and the general
principle of Wireless Networks In-the-Loop. The simulation
framework that we have created from scratch over the last
6 months (both of us spent roughly 40 hours per month on
this project), while still being work in progress, already shows
some of the benefits from WiNeLo.

We also feel that some kind of distributed computing is
imperative, in order to cope with networks of larger size.
In our framework this is accomplished by using Twisted,
which allows us to treat the network nodes and the server
independently on different machines. The next step would be
to distribute the actual simulation of the channel among many
computers, which should not pose much of a problem since all
the receive paths can be computed independently from each
other. Additionally since Twisted is extremely versatile, there
are hardly any limits on how you can use it. We have already
ran a simulation over an SSH tunnel and are currently thinking
about hosting the server with the help of a cloud computing
service like Amazon Elastic Compute Cloud (Amazon EC2).

In general, our simulation framework permits users to sim-
ulate real-time systems in non-real-time. Switching between
simulation and testing requires hardly any effort thanks to the
WiNeLo sink/source blocks and their GNU Radio companion
bindings. Furthermore the capability of the framework to cope
with dynamically connecting and disconnecting clients is, at
least to our knowledge, unique. All of this feature should
prove useful for a developer and provide him with a significant
advantage over conventional development methods.

REFERENCES

[1] J. Elsner, M. Braun, S. Nagel, K. Nagaraj and F. K. Jondral, “Wireless
Networks In-the-Loop: Software Radio as the Enabler”, in Software
Defined Radio Forum Technical Conference, 2009.

[2] S. Koslowski, M. Braun, J. Elsner and F. K. Jondral, “Wireless Networks
In-the-Loop: Emulating an RF front-end in GNU Radio”, in SDR Forum
2010 European Reconfigurable Radio Technologies Workshop, 2010.

[3] Free Software Foundation, “GNU Radio”, http://www.gnuradio.org
[4] M. Ettus, “Ettus Research LLC”, http://www.ettus.com
[5] Funcube Dongle, http://www.funcubedongle.com/
[6] RTL-SDR, http://sdr.osmocom.org/trac/wiki/rtl-sdr
[7] Twisted, http://twistedmatrix.com
[8] M. Ettus, ”Practical Software Radio: why things don’t always match

the textbooks”, http://gnuradio.org/redmine/attachments/download/249/02-
ettus-practical-radios.pdf

