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Abstract—Automatic modulation classification (AMC) of un-
known communications signals is employed in both commercial
and military applications, such as cognitive radio, spectrum
surveillance, and electronic warfare. Most of the AMC methods
proposed in the literature are developed for systems with a single
transmit antenna. In this paper, an AMC algorithm for multiple-
input multiple-output (MIMO) signals is proposed, which is based
on higher-order cumulants. The use of cumulants with different
orders, as well as their combinations as feature vectors are
investigated. The ideal case ofa priori knowledge of the channel
state information (CSI) is considered, along with a setting of
practical relevance, where the channel matrix is blindly estimated
through independent component analysis. The performance of the
proposed algorithm with different features is evaluated through
simulations and compared with that of the average likelihood
ratio test (ALRT).

Index Terms—Automatic modulation classification, multiple-
input multiple-output, independent component analysis, blind
source separation, higher-order cumulants.

I. I NTRODUCTION

Automatic modulation classification (AMC) algorithms are
employed to determine the modulation type of unknown
communications signals, with applications to cognitive radio,
spectrum surveillance, and signals intelligence.

Two different approaches to the AMC problem can be
observed in the literature for single-input single-output(SISO)
systems, i.e. the likelihood- and feature-based algorithms [1]–
[5], respectively. The former is optimal in the Bayesian sense,
but requiresa priori knowledge of the parameters of the trans-
mitted signal, and displays a high computational complexity.
The latter extracts features from the received signal to discrim-
inate the candidate modulation types, and can be regarded as
sub-optimal but usually requires littlea priori information. The
computational complexity is lower than that of the likelihood-
based approach [6]. Choqueuse et al. extended the average
likelihood ratio test (ALRT) to MIMO spatial multiplexing
systems [7]. In this contribution, we propose a feature-based
AMC algorithm for MIMO systems that employs higher-order
cumulants of the received signal as discriminating features.

The remainder of the paper is organized as follows. In
Section II, the MIMO system model is described. The pro-
posed algorithm is introduced in Section III. In Section IV,the
performance of the algorithm using different feature vectors
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is investigated through simulations, with and without channel
state information (CSI). These results are compared with
ARLT. The paper concludes with Section V.

II. SYSTEM MODEL

A spatial multiplexing MIMO system withNt transmit and
Nr ≥ Nt receive antennas multiplexes the modulated transmit
symbol stream toNt parallel independent symbol streams,
which are directly fed to the transmit antennas; hence, the
transmitted symbols are independent in time and space. The
received signalr[k] = [r1[k], . . . , rNr

[k]]T at time instantk is
given by

r[k] = Hs[k] +w[k] , (1)

where s[k] = [s1[k], . . . , sNt
[k]]T is a vector containing the

transmitted symbols from all antennas, andw[k] is a white
noise vector whose elements are zero-mean complex Gaussian
distributed random variables with varianceσ2

w. The MIMO
channel is characterized by the channel matrix

H =







h1,1 · · · h1,Nt

...
. ..

...
hNr,1 · · · hNr,Nt






, (2)

where hm,l, m = 1, . . . , Nr, l = 1, . . . , Nt, is the chan-
nel coefficient between them−th receive andl−th transmit
antenna. We consider a Rayleigh block fading channel. The
average signal-to-noise ratio (SNR) is defined as the total
received mean signal powerNtNrσ

2
s divided by the total noise

powerNrσ
2
w. Assuming, w.l.o.g. that the varianceσ2

s of the
transmitted symbols is normalized to one the SNR isNt

σ2
w

.

III. PROPOSEDFEATURE-BASED CLASSIFICATION

ALGORITHM

Fig. 1. The proposed AMC architecture.

In this work, we propose a feature-based AMC approach,
that uses higher-order cumulants as discriminating features.
The proposed AMC architecture is depicted in Fig. 1 [8]. The
signal of interest is received using a MIMO receiver withNr



antennas. Subsequently, the channel is compensated in order
to recover theNt parallel noisy independent symbol streams,
ŝm[k], m = 1, ..., Nt. Note that each stream corresponds to
the signal from one transmit antenna. Then, modulation type-
specific features are estimated from each of theNt estimated
independent symbol streams individually, which finally are
combined to be used for classification.

With perfect CSI, the channel compensation can be carried
out using zero forcing (ZF). The received signal vectorr[k] is
multiplied by the pseudo-inverse of the channel matrixH

+ :=
(HH

H)−1
H

H, where(·)H denotes the Hermitian operation.
If the channel matrix is not known, which is a much more

realistic assumption for scenarios where AMC systems are
used, the transmit symbols are estimated by the well known
joint approximate diagonalization of eigen-matrices (JADE)
algorithm proposed in [9], using solely the received signal
samples at each receive antenna, without requiring anya priori
information, except for the number of transmit antennas,Nt.
Note that JADE is able to separate the independent signal
streams only up to a real-valued multiplicative factor and a
phase rotation. Thus, the estimated transmit signals must be
normalized as follows

s̄m[k] =
ŝm[k]

√
1 + Pm

σŝm

, (3)

where Pm is the noise power of them-th estimated sym-
bol stream. Furthermore, the discriminating features usedfor
modulation type classification should be chosen such that they
are robust to unknown phase offsets. After the equalization,
the filtered noisew̃[k] is clearly no longer white; hence its
components are correlated and have non-equal powers.

For classification feature vectors containing higher-order
cumulants are used. The general expression of a cumulant of
orderu, v-times conjugated, for a complex random variables

is given as [10]

κu,v
s =

∑

Pu



k(p)

p
∏

j=1

E{suj−vjs∗vj}



 , (4)

where Pu is the set of the partitions of the elements
{1, 2, . . . , u}. A partitionρ consists ofp setsνj : ρ = {νj}pj=1

,
uj is the size of the setνj , vj is the number of conjugated
terms,k(p) = (−1)p−1(p− 1)! andE{·} denotes expectation.
For further details, the reader is referred to [10].

Theoretical values for cumulants of diverse orders for dif-
ferent linear modulation types are provided in following table:

BPSK QPSK 8-PSK 16-QAM

κ
2,0
s 1 0 0 0

κ
2,1
s 1 1 1 1

κ
4,0
s -2 1 0 -0.68

κ
4,1
s -2 0 0 0

κ
4,2
s -2 -1 -1 -0.68

κ
6,0
s 16 0 0 0

κ
6,1
s 16 -4 0 2.08

κ
6,2
s 16 0 0 0

κ
6,3
s 16 4 4 2.08

κ
8,0
s -272 -34 1 -13.981

κ
8,1
s -272 0 0 0

κ
8,2
s -272 34 0 -13.981

κ
8,3
s -272 0 0 0

κ
8,4
s -272 -34 -33 -13.981

Only cumulants of even order are non-zero for linearly
modulated signals, due to the symmetry of signal constellation
points. It can be seen that some cumulants have identical
values for different modulation schemes, and hence cannot
be used for their discrimination. Furthermore, the cumulant
value also depend on the phase offsets, which may be present
in the recovered symbol streams. Thus, we choose to use the
magnitudes of the estimated cumulants for classification, in
order to make the features invariant to phase offsets.

Following the feature extraction stage, the feature vectors
estimated from different symbol streams are combined prior
to the classification stage. We choose to employ selection
combining1 i.e., using the feature estimate from the signal
branch with the highest SNR.

Finally, the decision on a modulation schemeMi is made
in the classification stage by choosing the modulation type
that minimizes the Euclidean distance between the combined
feature vector estimatêK and the theoretical feature vector,
KMq

.

IV. SIMULATION RESULTS

In this section, simulations are used to evaluate the perfor-
mance of the proposed AMC algorithm with various cumulant-
based features. The average probability of correct classification
PCC is employed as a performance measure.

The average likelihood ratio test (ALRT), that has been
derived in [7] under the assumption of perfect CSI, is used
a performance benchmark. It is optimal in the Bayesian
sense, given that the channel matrix and the noise variance
are known, but has a complexity, which severely limits the
applicability.

Unless otherwise mentioned, the following parameters are
used in simulations. The set of modulations isM =
{BPSK,QPSK, 8− PSK, 16−QAM}, the number of trans-
mit antennas isNt = 2, the number of receive antennas is
Nr = 4, and the observation length isT = 1000. For each
SNR value,2000 iterations were performed.

Fig. 2 displays the performance of the proposed algorithm
for a single cumulant-based feature of various orders and ZF
equalization, as well as the performance of the ALRT.

The increase in the order of the employed cumulant fea-
ture leads to the following opposite effects. On one hand,
the distance between the theoretical values of the cumulant
features for different modulation schemes increases, improv-
ing the ability of the algorithm to discriminate between the
modulation types. On the other hand, the variance of the
cumulant estimates increases, which degrades the classification
performance. The performance of the cumulant-based features
|κ8,2

s | and |κ6,1
s | is similar and about 0.5 dB better than

|κ4,0
s |, while the feature|κ8,0

s | has the worst classification rate.
When compared with ALRT, an SNR increase of about 5.5
dB is required to achievePCC = 0.9 with the |κ8,2

s |-based
algorithm.

1A detailed investigation of combining schemes for the featurevectors will
be provided in future work and is therefore out of the scope ofthis paper.
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Fig. 2. Performance of the proposed algorithm with differentorder cumulants
and perfect CSI using ZF, in comparison to ALRT.

The combination of different features in vectors leads to a
higher degree of freedom in designing the AMC system. By
using this approach, it becomes possible to employ features
that, by themselves, cannot classify all the modulation types in
M. For exampleκ6,3

s cannot be use to discriminate QPSK and
8-PSK; however, this can improve the capability of a feature
vector to discriminate BPSK and 16-QAM.

In this work, every possible combination of feature vectors
of lengths 1 to 7 with cumulant-based features up to the order
of eight are investigated via simulations. Fig. 3 shows the
classification rates for the best feature vectors with different
lengths. The curves for feature vectors with a length between
two and six are on top of each other. The performance
difference between the classifier that uses the feature vector
K = [|κ8,2

s |, |κ8,4
s |]T and ALRT is only 4 dB at aPcc of 0.9.

Using the feature vectorK = [|κ8,2
s |, |κ8,4

s |]T instead of using
only one cumulant as a feature leads to a gain of about 1.5 dB
at aPcc of 0.9. The simulation results indicate that by using
more than two cumulants does not improve the performance
significantly.
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Fig. 3. Performance of the proposed algorithm with feature vectors with
different lengths. The best feature combinations are plotted in case of CSI
with ZF equalization.

The algorithm which uses the feature vectorK =
[|κ8,2

s |, |κ8,4
s |]T provides a good performance with relatively

low computational complexity. In Fig. 4, the performance of
this feature vector is investigated, when the transmitted symbol
streams from each transmit antenna are separated using the
JADE algorithm. At high SNR, the performance of JADE and
perfect CSI with ZF equalization are similar, while at a lower
SNR the former loses only about 0.25 dB when compared with

the latter.
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Fig. 4. Performance of the proposed algorithm with and without CSI, as
well as the ALRT.

V. CONCLUSION

A feature-based approach to automatic modulation classifi-
cation (AMC) for multiple-input multiple-output (MIMO) sig-
nals is proposed, which exploits higher-order cumulants. The
classification performance of feature vectors, which include
diverse higher-order cumulants is intensively investigated via
simulations. It is shown that an improved performance is
achieved with eighth-order cumulants. Perfect channel state
information (CSI) is considered, as well as the realistic case
of blind channel estimation through the joint approximate
diagonalization of eigen-matrices (JADE) algorithm. Results
show that a reasonably close performance is obtained in the
latter case, when compared with the former. The performance
of the proposed algorithm is also compared with that of the
optimal average likelihood ratio test (ALRT). While ALRT
requiresa priori information on the channel and suffers of high
computational complexity, the proposed algorithm does not
display such drawbacks. These results indicate the suitability
of our proposed algorithm for practical implementation.
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