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Abstract—In this paper, we examine the exploitation of in-
dividual patterns of behavior to enhance indoor positioning of
pedestrians. We make use of the fact that, due to habits and needs,
a person is likely to be in some locations more often than others.
For example, at their work or in their home, a person is likely to
spend more time in some rooms than in others. Therefore, it seems
natural to take advantage of established behavior patterns when
performing indoor localization in an effort to improve accuracy.
Such improvement is particularly beneficial during emergencies,
where location inaccuracies may lead to life-threatening delays in
response times. In this work, habitual behavior is modeled and
learned using a hidden Markov model. It is shown that, applying
the Markov model for location estimation results in more accurate
estimates when compared to using a standard particle filter with
odometry information. Additionally, transition probabilities as
well as position error distributions do not need to be known a
priori since they can be learned using the Baum-Welch algorithm.
Results show how the Baum-Welch algorithm can even learn the
distributions of biased estimates. On the other hand, it is shown
how user feedback can help accelerate the learning process, while
guaranteeing good parameter estimation accuracies.

Keywords—indoor positioning, hidden Markov models, Baum-
Welch

I. INTRODUCTION

Geolocation using RF signals, both indoors and outdoors,
has been an active area of research for over 30 years [1]. In
recent years, the accuracy of indoor geolocation has become
increasingly important due to the widespread use of cellu-
lar phones in placing emergency calls. In fact, the Federal
Communications Commission (FCC), citing the fact that a
majority of E911 wireless calls come from indoor locations,
recently published a Third Notice of Proposed Rulemaking
concerning accuracy requirements for indoor cell phone calls
[2]. In this notice, the commission proposed that cellular phone
service providers must locate callers within 50 meters in the
horizontal plane and provide vertical (z-axis) data within 3
meters of accuracy in 80 percent of indoor calls within five
years of the effective date of adoption of the rules. Some
service providers are quite pessimistic about the chances of
current cell-phone localization techniques to meet these new
requirements [3]. This motivates increased investigation of
the indoor geolocation problem, especially for emergency
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response, since small positioning errors can lead to long life-
threatening delays in help. In this paper, our objective is to
improve indoor positioning by learning and exploiting a user’s
established habits regarding their motion inside a building.

A. Motivation and Previous Work

Indoor positioning systems can be based on GPS, RFID,
cellular networks, UWB, or WLAN [4]. Motivated by the
emergency response scenario, we present a technique that can
be applied by cellular systems to enhance indoor positioning
without requiring additional hardware. Specifically, we use a
hidden Markov model (HMM) (either in the cellular location
server or in the phone itself) to model the location behavior of
people indoors. HMMs have been used previously to enhance
indoor positioning. In [5], the Markov state is modeled as a
joint state of position and line-of-sight (LOS)/ non-line-of-
sight (NLOS) propagation. Based on a UWB network, the
observations used are the power delay profiles or received
signal strengths at the available wireless access points. The
motion was modeled as relative motion resulting from a known
driving process. In [6], the rooms and hallways of a building
are modeled as states of an HMM. The transition probabil-
ities are assumed equally likely for all possible transitions.
IEEE 802.11 signals are used and the network is trained by
recording received signal strength histograms at each state over
24 hours. [7] presents a technique where a person is observed
and, considering and learning their intentions, an HMM is
automatically derived. Laser and visual data are used to update
the model parameters. [8] presents an automatic HMM training
by using a robot that collects WiFi and ultrasound data at
different parts of the building. The transition matrix is defined
equally for all possible transitions, meaning that no pattern of
behavior is considered in that model.

It is well known that the main challenge for indoor po-
sitioning systems using range measurements is NLOS signal
propagation. In order to deal with this challenge, several differ-
ent methods have been presented. For example, [9] presents a
method for identifying and mitigating NLOS using experimen-
tal data while [10] models the error using information about
the environment.

B. Contributions

The mentioned techniques are all built on a specific po-
sitioning system with defined measurements (e.g., received
signal strength at access points, visual data, power delay



profile, etc.) and rely on a defined hardware setup. The
listed methods are also based on the relative motion behavior
of a person (i.e., in one room) and not on a pattern of
behavior based on the different rooms and hallways of the
building. In this work, we consider habitual behavior (i.e.,
that some transitions are more likely than others), which is
a key difference between our work and that of [6] and [8]. We
propose a hidden Markov model that is not restricted to cellular
systems and that can be applied to many indoor positioning
systems. The presented method improves indoor positioning
performance without requiring any additional hardware in
the building or in the user device. By introducing transition
probabilities to model user movement between rooms based
on patterns of user behavior, we will show that the estimation
accuracy can be greatly enhanced. Furthermore, the transition
probabilities (i.e., the behavior patterns) as well as the error
distributions can be learned by applying the Baum-Welch
(BW) algorithm. As an example, we use a positioning system
based on ranging measurements, and model the main problem
of NLOS propagation. In order to mitigate position estimation
errors introduced due to NLOS propagation, the BW algorithm
learns the positioning error distribution. Finally, we show how
user feedback can help accelerate the learning process and
prevent the proposed algorithm from converging to locally, but
not globally, optimum solutions.

II. SYSTEM MODEL
A. Motion Model

We model the behavior of a pedestrian inside a large
building, for example at the workplace or in an apartment
building, using a Markov model with user-specific transition
probabilities. The Markov states are the rooms or hallways, or
in the case of large rooms/halls, portions of them. Normally,
a user has a high probability of staying in some states (e.g.,
an office) and a very low probability of staying in other states
(e.g., a hallway).

As an example of the state transition probabilities, consider
the five numbered states in Fig. 1, where states 1,2 are the
entrance of the building, states 3,4 are hallways and state 5 is
an office. An example transition matrix for these five states is:

0.1 09 0 0 0
0.05 0.05 0.9 0 0

A=| 0 02 005 075 0 |. (1)
0 0 04 01 05
0 0 0 005 09

Assuming a known floor plan of the building, it is known
which state transitions are possible and which are not, but the
state transition probabilities are not necessarily known a priori.
Additionally, we assume that it is known when and where
the person enters the building, e.g. by using GPS or some
other outdoor localization method. Using this information,
the positioning system knowns when to initialize the indoor
tracking algorithm as well as the initial state probabilities
of the user. Using the transition matrix, the movement of a
person between rooms is modeled as a Markov chain. The
actual position of the person within a state (room/hallway) is
modeled using a probability distribution, e.g. here, uniform.
How the building is divided into different states is a system
design parameter that depends on the positioning scenario, the
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Fig. 1. Durham Hall floor plan with the 27 states that were used for the
simulations marked by red rectangles and 5 states picked for illustration.

required accuracy and the available computing capacity. If the
aim is to find the room where a person is located, then defining
each room as one state would be reasonable.

B. HMM-based User Mobility Model

Starting from the previously described movement model,
we introduce the hidden Markov model. The HMM with
N states representing rooms, hallways, or parts of both is
characterized by the following parameters:

e A: N x N transition matrix; [A];; = a;; is the
transition probability from state 7 to state j. Note
that some elements are known to be zero (since they
represent non-adjacent locations), but otherwise the
matrix is assumed to be unknown in advance, unless
stated otherwise.

e p;(0y): conditional output probability, where o; is
the observed quantity (here o; € R? is the position
estimate obtained from a standard position estimator).
pi(0) is the probability of observing o, at time ¢
conditioned on being in state i.

e 7, initial probability of being in state 4.

Estimating the Markov state is equivalent to estimating the
room or the part of the room where the node (e.g., the
mobile device or in the emergency scenario, the cellular user)
is located. Therefore, in this analysis, accuracy is quantified
through the room-level (or partial room-level) accuracy mea-
sure, or the probability that the estimated state is the true state.
This is different from most studies, which emphasize the esti-
mation accuracy in meters. Since here we are ultimately only
concerned with room-level accuracy, we find error probability
to be a more useful metric.



C. Observation Errors

The observations used in the HMM are position estimates
that result from applying a positioning algorithm to available
measurements (e.g., time of arrival, received signal strength,
time difference of arrival, etc.). Thus, the model does not
depend on the available measurements or the underlying
system, but rather on the expected error distribution of the
estimated positions. Since the model is built upon the outcome
of the position estimation, it can be regarded as a higher layer
estimation and can be applied in various systems.

In this paper, we use time difference of arrival (TDoA)
measurements as an example and apply a least squares algo-
rithm [11]. In the two-dimensional case, an observation at time
tis: oy = [, 9] and its corresponding true position (generated
as described in Sections II-A and II-B) is: x; = [z,y]”. The
position estimates experience errors due to imperfect TDoA
measurements. Assuming L TDoA anchors and defining, with-
out loss of generality, anchor 1 as the reference, the estimated
range difference between this reference anchor and anchor /,
dy 1, can be modeled as [10]

62171 =v-T1 = d171 + bl71 + N1, l=2,...,L, 2)

and
diy = d; —ds, (3)

where dj, d; are the distances from the anchors [, 1 to the node
(e.g., the cellular user), d; ; is the true range difference between
the anchors, v is the propagation speed, 7; 1 is the estimated
TDoA, b, is a bias due to multipath propagation and n;; is
zero-mean Gaussian noise with power 2. Assuming that the
biases do not change when the environment does not change,
we model the resulting range biases as position dependent,
meaning that each point in each state has fixed range biases. To
be able to learn these biases, we simplify the model by parti-
tioning the states into smaller sections, which we call cells, and
define a fixed bias vector per cell c. Note that this should not be
confused with the cells of a cellular system. The set of cells is
defined as: C = {(i,7) : i€ {1,2,...,N},j5€{1,2,...,M;}}
where N is the number of states and M, is the number
of cells in state ¢, which depends on the size of the area
corresponding to a particular state. Fig. 2 shows an example
of the cell structure for a state, defined by the squares. The
cell size is another system design parameter depending on
the environment as well as on the accuracy requirement. The
smaller the cell size, the higher the accuracy.

At each time step ¢, the actual position is assigned to
a cell (x; € (4,7)) with a fixed (but random) bias vector
(b(x¢) = [b2,1(x4),b3,1(x¢), ..., br,1(x¢)]) associated with it.
The resulting range difference measurement is then modeled
as

(2171(25) = dl,l(t) + bl,l(xt) + Tlhl(t). 4)

The bias elements in each cell can be drawn from any
distribution, e.g., from a uniform distribution such that b; ; ~
U(0, biax) where b,y is the parameter defining the maximum
bias value (in meters) or from an exponential distribution such
that b; 1 ~ exp(ﬁ) where by, is the parameter defining
the expected value 1()in meters). These two distributions will
be used in the simulation section for exemplary purposes, but
they can be chosen arbitrarily. The TDoA estimates are used,
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Fig. 2. Example of the cell points marked by (x) and the cells defined by
the lines for state 2 in Fig. 1

together with the known positions of the anchors, as inputs to
the least squares algorithm described in [11], and the resulting
position estimate o, is the observed input in the HMM.

D. Calculating the Conditional Output Probability

Since the observations are continuous, a continuous HMM
is used. The probability of observing o while being in state %
is

pi(o) = / p(o|x)p(x)dx Q)
where R; is the region corresponding to state ¢ and p(x) is
the probability of being at position x. To be able to learn
the model parameters, the integral in (5) is approximated by
summing over M; cell points in each room, yielding

M;

pi(0) = > p(Xim) - P(O[Xim). (6)

m=1

Fig. 2 shows an example of the cell points as well as the cells
for state 2 of Fig. 1. While the cells (squares) are used to define
the areas with fixed biases, the cell points are used to describe
the probabilities of the observations for each state. Since the
position estimation error is unknown, we approximate the
error distribution of the position estimates using a Gaussian
mixture. For a uniformly distributed position within a room and
for the error models given in Section II-C, the approximated
conditional output probability is:

1

M
S 1 1 Te—1
. ~ = e o) B (0mk )
pz(O) mzﬂ Mi o . ,7|2i7m| e
)

where p; ., and 3; ,, are the mean vector and the covariance
matrix of mixture component m of state ¢, respectively. For



unbiased position estimates, the mean vectors are the cell point
coordinates. For biased estimates, the mean vectors would be
shifted depending on the fixed biases of the cells.

IIT.IMPLEMENTED ALGORITHMS

In this section, three implemented algorithms are described:
(i) the Baum-Welch algorithm which is used to learn the
HMM model parameters, (ii) the forward algorithm which
uses HMM model parameters to estimate state probabilities
and (iii) the particle filter with odometry information which
was implemented as a benchmark to the presented method.

A. The Baum-Welch Algorithm

The description of the Baum-Welch (BW) algorithm as
well as the algorithm steps follow the tutorial by Rabiner
in [12]. The BW algorithm is an iterative algorithm which
searches for the maximum likelihood solution parameters
of a hidden Markov model given an observed sequence
o = [01,09,...,07]. The model parameters that can be
estimated using BW are 8 = (A,p(o),w) with p(o) =
[p1(0),p2(0), ... pn(0)]" and 7 = [my,m2, ..., mn]". The
algorithm requires as input: (i) initial values for the model
parameters 6y chosen randomly or using some information
(e.g., the floor plan of the building), (ii) the defined states
and (iii) an observed sequence 0j,02,...,07 of T position
estimates. The steps of the algorithm are as follows:

1. Compute State Probabilities Using Current Model Pa-
rameters 0: To calculate the state probabilities, we first need
to calculate the forward and backward probabilities of the
sequence 01,03, ...,0r. The forward probability c;(t) is the
probability of being in state ¢ at time ¢ using the partial obser-
vation sequence 01, O, ..., 0¢. It can be computed inductively
using the currently estimated model parameters 6 as follows:

e Initialization: o;(1) = m; - p;(01).
° Induction : Ozl‘(t + 1) = [E;V:1 Qa; (t)aji] pi(0t+1).

The backward probability (;(t) is the probability of being
in state ¢ at time t given the partial observed sequence
O44+1,0¢42,...,0r and the currently estimated model param-
eters . It can be solved inductively as follows:

e Initialization: 3;(T) = 1.
° Induction: j3; (t) = Z;VZI Q;5Dj <Ot+1>ﬂj (t + 1).

Using the forward and backward probabilities, the state
probabilities are calculated as
a; (t)Bi(t)
7i(t) = N

_— (8
> =1 (8)B5(t) :

2. Re-estimate Model Parameters to Aé: The model param-
eters can now be re-estimated to 8 = (A, p(o), 7) by

e  Calculating the probability of being in state ¢ at time
t and state j at time ¢ + 1 as follows:

i) = a;(t)aijpj(oe+1)B;(t + 1)
j Z]kvﬂ Zf\il ag(t)arpi(0i41)Bi(t + 1)(9)

e  Updating the transition probability by

T-1
dij = M (10)
D=1 it

e  Updating the mean vectors and covariance matrices of
the Gaussian mixtures by

T
S i) o

,m 1
Zt_— 7’L7771(1)

and
s _ T vim(®) (00— i) (00 = i)
7 et Vi (1)
(12)
where
(0t|xi m)
Yi,m () = vi(t) - [pl : (13)
Zl]\iﬁ p(og]xi 1)

3. Repeat Steps 1 and 2 until Convergence: The state prob-
abilities can be re-calculated using updated model parameters
and the model parameters can be re-estimated using the new
probabilities. These steps are repeated until the maximization
of the likelihood p(o|6) = Zf;l a;(T) has reached a desired
convergence (i.e., when the improvement of the likelihood is
negligible from one step to the next).

B. The Forward Algorithm

The forward algorithm (FW) is the actual state sequence
estimation algorithm. Unlike the BW algorithm, which aims at
estimating the HMM model parameters, the forward algorithm
estimates the state sequence using given HMM parameters
(known or learned through the BW algorithm) and an obser-
vation sequence as discussed in III-A.1. The estimated state
at time t is the state with the highest calculated forward
probability.

C. The Particle Filter with Odometry Information

As a benchmark to our proposed method and to compare
our model with the state-of-the-art, we employ a particle filter
(PF) which is provided with the same range measurements as
the aforementioned algorithms in addition to (noisy) odometry
information. The estimated odometry information at time ¢ is
modeled as

2

Az, Ayl =x; — x4 1 +w;, W~ N (0, 02"1) (14)
The odometry information is modeled as the straight-line dis-
tance between the true positions at time ¢ and ¢ —1 plus a zero-
mean estimation error w. Using the odometry information, the
known odometry error model, the TDoA estimates, as well as
the TDoA error model, the particle filter was implemented
following [13].



IV.RESULTS

For the simulations, we used a simplified floor plan of part
of Durham Hall at Virginia Tech shown in Fig. 1. We defined
27 states on that plan, marked by the dashed red lines, and
performed the simulation by generating a Markov chain from
these states using a transition matrix generated similar to (1).
For the TDoA position estimation, four anchors were placed on
four corners around the building. The cell size for generating
the fixed biases as well as for calculating the output probability,
was set to Im x 1m.

For each generated position, the observed position estimate,
which is the input for the different algorithms, was generated
following these steps:

1)  Calculating the true TDoAs using the four anchors.

2)  Adding the bias vector of the cell of the true position.

3) Adding white Gaussian noise to the biased TDoAs.

4)  Estimating the position from the erroneous TDoAs
using the algorithm by Chan & Ho [11].

After generating the observations from the true states,
we ran different algorithms to show their performances: (i)
the forward algorithm (FW) given the true model parameters
(i.e., true transition matrix, true mean vectors and covariance
matrices of the observations), (ii) the forward algorithm with
estimated model parameters using the BW algorithm, and (iii)
the particle filter using noisy odometry information (PF). To
initialize the BW algorithm, we used the floor plan of the
building to set the zero-transition probabilities in the transition
matrix. All non-zero transition probabilities were assumed
equally likely. The mean vectors were the center points of
the cells and the covariance matrix was

2500 0
¥ = [ 0 2500}’ (15)

assuming high positioning errors as initial values. The chosen
performance criterion was the probability of finding the cor-
rect state since this is sufficient for most indoor positioning
scenarios and is equal to the output of the forward algorithm.
The parameters of the simulations were the range estimation
error (0, from (2)), the particle filter odometry error (o,
from (14)) and the bias parameters described in Section II-
C (bmax, bexp). We show the error behavior as the number
of BW runs increases. Each BW run corresponds to running
the BW algorithm up to convergence using one observation
sequence.

A. Comparing the Forward Algorithm to the Particle Filter

Fig. 3 compares using the PF with odometry information
to the FW with known transitions and known mean vectors
and covariance matrices of the observations. This result of the
FW algorithm can be seen as an upper bound to using learning
algorithms for these parameters. The result shows the effect of
increasing ranging error standard deviation on both algorithms
for different odometry errors. As a comparison, the dashed
curve shows the performance of the position estimate o, that
was given to both algorithms (i.e., the least squares estimate
using TDoA measurements). Using the HMM, the probability
of estimating the right state is greater than 80% even with a
ranging error standard deviation of 35 m. The FW outperforms
the particle filter even for an odometry error standard deviation
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Fig. 3. Performance of the forward algorithm with known model parameters
vs. the particle filter with known odometry error distribution over increasing
On.

of only one meter. It is important to note here that the results
highly depend on the transition matrix. The further away we
are from uniform probabilities (the more we move towards
deterministic behavior), the better the results using the hidden
Markov model and hence, the more robust the localization
performance is against errors.

B. Learning the Biased Error Distribution

Fig. 4 shows the effect of learning the distributions of the
biased observations, assuming known transition probabilities.
The biases were generated randomly either using a uniform
distribution or an exponential distribution. Each BW run was
performed using a sequence of 200 estimated positions. The
results show that the BW algorithm is able to accurately
approximate the error distributions of the observed position
estimates using the Gaussian mixtures presented in (7) after
only one run. Additionally, it can be seen that, given the same
mean ranging bias, exponentially distributed ranging biases
lead to poorer performance than uniformly distributed biases,
possibly due to the unbounded nature of the ranging errors
with the exponential model.

C. Learning the Model Parameters with User Feedback

A limitation of the BW is that it searches for a local
maximum of the likelihood function. Whenever the system has
a complicated distribution, as in our model, the algorithm may
converge to a local maximum, thereby limiting performance.
This is the case when trying to estimate all model parameters
in the described scenario, given random or uniform initial
parameters. This problem can be mitigated using feedback.
Feedback in this context means providing information about
the true state, supplied by the user, who is aware of his/her
position, at random times. More specifically, this feedback
could be given by a cellular user simply stating whether or
not he/she is in the estimated room. Using this feedback, the
model is trained without having to run tests and perform mea-
surement campaigns for each user. Fig. 5 shows the effect of



P (Correct State)
=
W

04
—¢— Exponential bias pdf (b = 50m)
0.3 exp 1
—+— Exponential bias pdf (bexp =100m)
02 —e— Uniform bias pdf (bmax = 100m)
—g— Uniform bias pdf (bmax =200m)
0.1 | | | | | | | | 1

0 1 2 3 4 5 6 7 8 9
BW runs

Fig. 4. Performance of the forward algorithm with a known transition matrix
and an unknown biased observation error. The results are plotted over Baum-
Welch runs that were performed every 200 Markov steps.

learning all model parameters with the help of user feedback.
Compared to learning the observation error distribution with
a known transition matrix, learning all model parameters at
once requires longer observation sequences in order to obtain
accurate results. Therefore, the BW algorithm was applied on
observation sequences of length 500 rather than 200 in the last
result. We use different feedback rates for the simulations. A
rate of 0.05 means that the user chooses to provide his/her state
in 25 out of 500 time steps. As a comparison, we also show
two simulations with descending feedback starting at 0.1 and
0.2 and ending at 0. The results demonstrate that feedback is
needed mainly at the beginning and that higher feedback rates
at the beginning accelerate the learning curve. The decrease in
accuracy of the two descending feedback curves is due to the
fact that the information fed to the algorithm decreases with
each run.

V. CONCLUSION

This paper shows how the habitual patterns of a person
inside a building can be used for improving indoor localization,
which is particularly helpful in applications such as indoor
emergency response. By modeling these patterns using a
hidden Markov model, not only can we use algorithms like
the forward algorithm to obtain improved position estimates,
but we can also learn the transition probabilities of the user
as well as the parameters of the positioning error distribution
by applying the Baum-Welch algorithm. If the algorithm is
applied regularly, we can even adapt to changing environments
by re-estimating the model parameters. For future work, addi-
tional parameters can be considered in the motion model (e.g.,
time). Additionally, an experimental test can be conducted to
verify the presented results.
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