
An Over-the-Air Reconfiguration API for
Experimental Cognitive Radio Setups

Moritz Fischer, Martin Braun, Jens P. Elsner and Friedrich K. Jondral
Communications Engineering Lab, Karlsruhe Institute of Technology (KIT), Germany
moritz.fischer@student.kit.edu,{martin.braun, jens.elsner, friedrich.jondral}@kit.edu

Abstract—We present a software solution for over-the-air
reconfiguration of remote software radio terminals using the free
GNU Radio toolkit, facilitating the development of Cognitive Ra-
dio applications. The modular architecture allows for separating
the cognitive engine from the signal processing algorithms, thus
allowing fast implementation, verification and easier testing.

Index Terms—Over-The-Air (OTA) Reconfiguration, Cognitive
Radio, GNU Radio

I. I NTRODUCTION

Cognitive Radio (CR) is a broad term and entails a variety
of concepts and technologies. In this work we attempt to
tackle one of the problems often neglected in this context:
the remote reconfiguration of radio terminals (over-the-air
reconfiguration). This element is necessary to benefit from the
decisions of a cognitive engine (CE): if a terminal dynamically
reconfigures the waveform applied, it must be possible to
transmit this information to the other terminals. Over-the-air
(OTA) reconfiguration is described in [1].

Our work consists of a software package able to drive
Software Defined Radio (SDR) hardware for CR applications.
We provide a minimal framework which facilitates the remote
reconfiguration of other terminals. By this means, it could
be possible to attach a CE or other elements such as a
spectral observation module which in turn select the applicable
waveform for a given scenario.

II. H ARDWARE/SOFTWARE

We use the free software radio toolkit GNU Radio [2]
for implementation. Every terminal in the wireless network
consists of a host PC running the same version of GNU Radio.
It is possible to include external GNU Radio modules such
as the spectral estimation toolbox [3] or any other kind of
software module; however, it is assumed a-priori that the base
system is identical in all terminals to ensure that software
running on one terminal will also run on another.

Every terminal host PC is connected to an identical radio
front-end such as the Universal Software Radio Peripheral
(USRP). Identical in this context refers to the fact that allthe
RF front-ends have equal capabilities (such as bandwidth, fre-
quency range) and expose the same application programming
interface (API).

The combination of GNU Radio and the USRP allows for
very small executable files while at the same time allowing for
simple and fast development of signal processing code. Using

GNU Radio, it is possible to write powerful software radio
code in a single file of a few kilobytes in size, especially if
compression is applied to the Python source code.

We combine our software framework in a package called
GROTARAPI(GNU Radio over the air reconfiguration API).

III. C APABILITIES

The purpose of this experimental software is to provide a
testbed for CR algorithms. The main feature of such software
must thus be modularity: It is essential that central parts
of the software can quickly and easily be exchanged. Our
design therefore separates signal processing components from
the decision logic, but provides easy access to the individual
components.

A. Remote over-the-air reconfiguration

The main feature is the built-in capability to reconfigure
remote terminals via the air interface. This is done by trans-
mitting the actual signal processing modules themselves. If
one terminal – denoted “master” here – wants to initiate a
communication by a given standard, a request is transmitted
to the receiving – or “slave” – terminal via the control
channel. If the receiving terminal does not know this specific
standard, the master terminal transmits the code necessary.
Once both terminals have the signal processing code necessary,
both terminals activate this waveform and use it for ensuing
communications.

B. Security issues

Since the master terminal transmits code that is directly
executed on the slave terminal, a few words on security
are in order. We apply a GPG signature [4] to transmitted
code for the receiver to be able to verify the true identity
of the transmitter. Still, this kind of setup implements only
rudimentary security. Direct execution of code which must be
able to access connected hardware is a vulnerability. It must be
ensured that experiments are run in a controlled environment.

IV. I MPLEMENTATION DETAILS

As mentioned before, we solely focus on the OTA recon-
figuration problem as described in Section III, while exposing
an interface to add CR features later on. Careful investigation
of the required capabilities of a cognitive radio platform as
described in [5] show that access to a wide range of meters
such as battery status or geographic location are needed in



User

Applications

(Browser,

Media player,...) 

Operating

System

Cognitive

Engine
Reconfiguration 

Controller

Reconfiguration 

Controller

Software Defined Radio 

Frontend (e.g. USRP)

data transfer

Cognitive Radio

read USER 

meters

use for 

communication

read SYSTEM 

meters

use for 

communication

configure

(waveform)

notify about

RF events

notify about

waveform 

events

read

RF

meters

select, 

add,reconfigure 

waveform

Fig. 1. Global Overview

order for the CR being able to make “smart” decisions. It is
thus sensible to provide the interface to the other parts of the
CR such as the CE in a way that also facilitates access to
the meter values, while still staying flexible enough to not put
unnecessary restrictions for the overall design in place.

A. Overview

Fig. 1 gives a rough overview on how to integrate the CR’s
cognitive engine, user applications and our Reconfiguration
Controller. The CR is composed of an SDR front-end, a
Cognitive Engine, and our Reconfiguration Controller. In order
to work out of the box with our framework, the SDR front-end
needs to fulfill the requirements outlined in Section I.

The Cognitive Engine(CE) can be considered the “brains”
of a Cognitive Radio. Using adaptive algorithms, machine
learning and artificial intelligence techniques (see e.g. [6]) to
evaluate themetervalues it actively influences the behaviour
of the CR system (“turning the knobs”). However, this problem
is not subject of our implementation.

The Reconfiguration Controller(RC) allows the cognitive
engine toadd, reconfigureor selecta waveform via a simple
remote procedure call (RPC). It provides an interface via D-
Bus (Section IV-B). Additionally, it is possible for the cogni-
tive engine to register for notification about certain events such
as the successful switch from one waveform to another, or the
availability of a new waveform. This facilitates asynchronous
programming.

By starting a certain waveform the Reconfiguration Con-
troller reconfigures the SDR front-end to communicate con-
forming to a certain standard. Furthermore, the Reconfig-
uration Controller enables a secure and reliable waveform
exchange between the terminals.

Fig. 2 gives an overview over the parts of the Reconfigura-
tion Controller. In the master configuration it is composed of
a Protocol Parser, two Module Managersand a reference to
the current waveform.

The waveforms in our implementation are composed of
building blocks we calledmodules. Thesemodulescan be
Python source code files, binary files, or arbitrary other files.

In order to manage availability, security, and deployment of
the modules we use an entity termed theModule Manager. The
Module Managercurrently allows for getting a list of available

Protocol

Parser

Module

Manager

(Master)

Module

Manager

(Slave)*

current

waveform

start / stop/ 

exchange

check availability

add

check availability

get module

Reconfiguration Controller

* dashed parts only used in Master 

configuration

Fig. 2. Overview of the Reconfiguration Controller

modules, adding a new module, verifying the signature of a
module and compiling a list of missing modules, if given a
list of desired modules.

In addition to the Module Manager the Reconfiguration
Controller contains aProtocol Parser. This parser consists of a
state machine that represents the protocol (See Section IV-D)
The Protocol Parser (and thereby the used protocol) can be
easily exchanged to use e.g. a binary protocol if performance
is an issue. Moreover, small adaptions can be easily made, to
cope with smaller changes, such as adding custom commands
in case the CE needs more elaborate commands for the
Reconfiguration Controller.

Let us consider the following example to illustrate how the
parts of the CR might work together:

1) By constantly monitoring the RF spectrum, the cognitive
engine creates a new waveform, to use a newly found
spectrum hole for communication.

2) After creating the waveform the cognitive engine notifies
the Reconfiguration Controller about the availability of
a new waveform and requests to run this new waveform.

3) The Reconfiguration Controller will ensure the availabil-
ity of the waveform for all participating terminals.

4) Finally both terminals switch to the new waveform,
and the Reconfiguration Controller notifies the cognitive
engine about the successful change.

B. The D-Bus interface

In order to enhance flexibility when designing CRs using
our software, it is possible to run the different parts of the
CR in separate processes; however, this creates the need for
inter process communication (IPC). The D-Bus framework1

was chosen instead of traditional UNIX methods such as pipes
or shared memory for it’s ease of use and great flexibility.
By registering a service with D-Bus’ session bus it is easily
possible for other parts of the CR to access the Reconfiguration
Controller’s capabilities. Using D-Bus, the task of collecting

1Desktop BUS is part of the freedesktop.org project, see [7] for further
reference.



the meter’s values from different sources in the system and
keeping the different parts of the cognitive radio updated about
events, are reduced to simple RPCs or registering handlers for
the signals emitted by other parts of the CR.

A simple battery meter to show how easy it is to add
custom meters to the cognitive radio system using D-Bus has
been implemented. Via a simple RPC it is possible to get the
current battery discharge rate or the remaining capacity. In
order to save resources (processor load), the distributed meter
concept could be further enhanced to use D-Bus’ ability to
transparently start services when a RPC is made and they are
not running.

C. Control Channels

Since the individual terminals can only communicate via
air interface (which spawns the need for OTA reconfiguration
in the first place), we require some kind of control channel to
transmit protocol data and signal processing from one terminal
to the other. This is a simple task within the presented setup,
since the reconfiguration controller has access to the entire
library of waveform modules, which it can use to transmit
commands to the remote RCs.

This leaves the problem of bootstrapping the communica-
tion. At one point in time, all RCs must know where to “listen”
for incoming commands. In our setup, we define aControl
Channelby choosing a fixed frequency and waveform. At the
beginning of a reconfiguration cycle, the terminals switch to
this control channel and wait for or transmit commands to
configure the ensuing communication. This step is called the
rendezvous period. However, alternatives to a fixed control
channel have been proposed previously (e.g. [8, Section V]).
Also, the protocol can be extended to change the control
channel between reconfigurations.

D. The OTA Reconfiguration Protocol

After the initial rendezvous, the terminals start normal
communication (idle mode). For simplicity and readability
reasons we used a simple line based protocol. Requests to
change the waveform for example have the following form:

RUN_MOD
{NAME_OF_THE_WAVEFORM}
ARGS
{STRING_OF_ARGUMENTS}

The arguments contain information such as the centre fre-
quency or the maximum time after which the waveform should
be switched back to the control channel. We simply store these
as a set of key/value mappings. Python has built-in libraries
to serialise this kind of data into strings, which we utiliseto
efficiently and simply transmit the arguments in string form
within the protocol stream.

Fig. 3 shows an example on how the OTA reconfiguration
protocol works. For this setup, the CE is replaced by users
who explicitly request waveforms from the radio systems.
We have two waveforms available (A and B), which differ
in modulation, bandwidth and center frequency. Also, we fix

Fig. 4. Screenshot of QDBusViewer showing the master’s D-Businterface

a physical channel, which is known to both terminals, as a
control channel.

In the first step, one user requests to start a transmission
using waveform A. The RC checks this waveform is actually
available and transmits the commandRUN_MOD {waveform
A} to the other terminal. Here, again, the RC checks if this
waveform is available. This is the case, so it replies with a
RUN_ACK acknowledgement, and both terminals reconfigure
themselves to use the requested waveform. Assuming both
terminals only have one RF front-end, the hardware is then
blocked by waveform A until the waveform process exits;
either by a given timeout or simply by exiting itself (e.g. after
a successful data transmission).

After exiting, the RC takes control of the SDR again.
The user can then request communication using a different
waveform and selects waveform B. Again, the RC of the
first terminal requests communication from the other terminal
using the commandRUN_MOD {waveform B}. This time,
the remote terminal does not have the waveform available
and replies with a negative acknowledgement,RUN_NAK.
The first RC then transmits the communication modules to
other terminal, which checks signature to ensure no invalid
code was introduced and adds the checked code into its
own module library. Once this has happened, it can transmit
the Run AcknowledgeRUN_ACK. Both terminals can then
communicate using waveform B.

E. Experimental Setup

All experiments were conducted using two off-the-shelf
laptops running a recent Linux distribution. Laptop A was
running a 64-Bit Linux for Intel’s em64t architecture. Laptop
B was running a 32-bit Linux for Intel’s x86 architecture;
however, this does not mean that the implementation is limited
to x86 processors. Any architecture capable of running GNU
Radio and Python in the required versions (GNU Radio 3.4
compiled with UHD support, Python 2.7) should be able to
drive the proposed platform. As RF front-end two USRP2
devices using Wideband Transceiver (WBX) daughterboards
were used. The WBX boards allow transmission and reception
in a frequency range from 50 MHz to 2.2 GHz, thus allowing
for great flexibility. The USRP2s were connected to the host
laptops via gigabit Ethernet, allowing for up to 20 MHz of
usable RF bandwidth, limited by the host PC’s ability to



Fig. 3. Example setup with protocol details

process this amount of data and, of course, the employed
waveform. We successfully implemented a demonstration of
the testbed’s capabilities by implementing three exemplary
waveforms using the GNU Radio SDR framework: A video
and an audio stream using GMSK modulation as well as an
analog narrowband FM waveform.

As mentioned in Section IV-A, the Reconfiguration Con-
troller exposes an interface that can be explored using graphi-
cal tools such asQDBusViewer, a graphical D-Bus exploration
tool [9].

Fig. 4 shows the exposed signalmodule changedthat will
be emitted if the waveform is finally changed to the one
requested by the RPC callrequest run module dbus that
might be used by a CR designer working on the CE to easily
initiate the OTA reconfiguration of a second terminal.

V. CONCLUSION

In this paper, we introduce a testbed for the implementation
of CR algorithms using Python and the GNU Radio frame-
work. The proposed Reconfiguration Controller takes care of
the OTA reconfiguration which is required in a CR system to
allow the designer to concentrate on the implementation of
CR algorithms and the details of the Cognitive Engine. It can
be regarded as one of the many necessary steps to implement
a CR system as envisioned in [5].

As Section IV-B shows, D-Bus appears to be quite useful
in a PC-based CR architecture for its ease of use and high
flexibility.

REFERENCES

[1] M. Jones and L. McGrath, “Over-the-air software download considera-
tions for public safety and other markets,”Proceedings of the SDR ’05
Technical Conference, 2005.

[2] GNU Radio Project Website. [Online]. Available: www.gnuradio.org
[3] SpecEst: The Spectral Estimation Toolbox for GNU Radio,

Communications Engineering Lab, Karlsruhe Institute of Technology,
2010. [Online]. Available: http://www.cgran.org/wiki/SpecEst

[4] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
“OpenPGP Message Format,” RFC 4880 (Proposed Standard), Internet
Engineering Task Force, Nov. 2007, updated by RFC 5581. [Online].
Available: http://www.ietf.org/rfc/rfc4880.txt

[5] J. Mitola, “Cognitive Radio – An Integrated Agent Architecture for Soft-
ware Defined Radio,” Ph.D. dissertation, Royal Institute ofTechnology
(KTH), Sweden, 2000.

[6] T. W. Rondeau and C. W. Bostian,Artificial intelligence in wireless
communications, ser. Mobile Communications Series. Boston [u.a.]:
Artech House, 2009.

[7] Freedesktop.org D-BUS Project Website. [Online]. Available: www.
freedesktop.org/software/dbus

[8] M. Braun, J. P. Elsner, and F. K. Jondral, “Signal Detection for Cognitive
Radios with Smashed Filtering,”IEEE Vehicular Technology Conference,
April 2009.

[9] QDBusViewer Online Reference. [Online]. Available: http://doc.qt.nokia.
com/4.5/qdbusviewer.html


