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Abstract— Geolocation methods are recently gaining a lot
of interest due to their new range of applicability. Location
based mobile services as well as frequency regulators aiming
at efficient spectrum usage are interested in flexible, low cost
geolocation systems with high accuracy. One method that meets
those requirements is Time Difference of Arrival (TDoA). It has
been subject to research for many years now. The main focus of
research published about TDoA is presenting new algorithms or
calculating estimation bounds in different scenarios. Due to new
low cost available hardware solutions, a simple TDoA system
can be built and used as a testbed for different algorithms
in different real scenarios. This contribution presents an error
analysis of a TDoA sensor network using low cost, off-the-shelf
software defined radio platforms. The system relies on GPS
time stamps provided by the platforms. Five important TDoA
error types caused by hardware as well as different channel
effects are analyzed. Each error is analyzed in its influence on
the position estimate and a possible solution is given. Finally, a
general structure of how a smart TDoA system should work is
described.

I. INTRODUCTION

Time Difference of Arrival (TDoA) presents a good solution

for applications requiring passive localization. Compared to

other methods, TDoA offers a low cost solution with accu-

rate results. Passive localization can be applied in security

and emergency cases, as well as by frequency regulators in

a frequency monitoring and management system aiming at

efficient spectrum usage. These tasks require a localization

system with a wide range of applicability and high accuracy.

A large number of algorithms and methods presented

throughout the years have dealt with specific TDoA chal-

lenges. Estimating the TDoAs from received signals can be

a problem due to low signal-to-noise ratio (SNR), multipath

propagation, non-line-of-sight (NLOS) propagation and time

and frequency synchronization errors. Algorithms for estimat-

ing the relative time delay vary from simple or prefiltered

correlation methods [1] to super resolution algorithms [2]

or maximum likelihood-based algorithms [3], [4] that can

be used in multipath scenarios. Localization algorithms try

to overcome the resulting errors of TDoA estimates. When

dealing with additive random errors, minimizing the noise can

be done by least squares estimation [5], [6] or by Kalman

Filters for nonlinear systems. On the other hand, mitigating

resulting bias from NLOS errors can be done by eliminating

NLOS sensors after identifying them [7] or by weighting

the sensors’ estimates according to their reliability [8]. These

algorithms present good solutions to a number of problems.

The question remains on whether and when they can be

applied in real scenarios.

The software radio platforms provided by Ettus [9] present

a testbed that can be used to verify these algorithms in

different real scenarios. This paper presents an error analysis of

TDoA measurements obtained by using Ettus USRPs as TDoA

sensors and relates the results to methods previously described

in the literature, thereby validating their applicability. The

implemented algorithms are combined in an intelligent TDoA

system that can be applied in a wide range of scenarios.

The paper is organized as follows. Section II describes the

setup of the sensors, the transmitter, the transmitted signal as

well as the TDoA system. Section III analyzes five different

error types that can be seen from the measurement. Section

IV describes the effect of the presented errors on the resulting

position estimate and discusses methods to overcome these

challenges. Section V concludes the paper and presents ideas

for further work.

II. MEASUREMENT SETUP

The measurement consists of six identical sensor stations

which are installed on the rooftops of suitable campus build-

ings as can be seen in Fig. 1. Each sensor containts a

Universal Software Radio Peripheral 2 (USRP2) with a WBX

daugterboard [9]. This enables the sensors to record IQ-data in

a wide spectrum range (50 MHz - 2.2 GHz) using a wide range

of sample rates (up to 25 MHz). The USRP is conntected to

and controlled by a PC with a large storage space. The sampled

IQ-data is time stamped using a GPS module which provides

high accurate time measurements and is also used to discipline

the USRPs oscillators.

The transmitter to be localized sends a signal also using a

USRP2, an antenna and an amplifier. The transmitted signal

consists of 2 MHz of band limited white noise, from which

1 MHz is filtered at the receiver and processed for the TDoA

estimation. The center frequency was set to 431 MHz.

The sensors’ sample rate was set to 5 MHz. After gathering

the IQ-data from all sensors, the band of interest is filtered

using a lowpass filter. Afterwards, one sensor is chosen as

reference sensor (here: sensor 1). The simplest relative time

delay estimation method is to cross-correlate received signals

from the other five sensors with the received signal of the ref-

erence sensor. The resulting correlation should peak at the true

time delay. To enhance accuracy, a quadratic interpolation is

carried out around the detected peak. Localization algorithms



Fig. 1. Measurement Setup at the University Campus

Fig. 2. TDoA system setup

transform the estimated time differences into delay differences

and solve the resulting hyperbolic equation system to obtain

a position estimate. Fig. 2 gives an overview of the TDoA

system setup.

The error analysis is based on time delay estimation errors

and their effect on the position estimate. The true position was

logged using an accurate GPS receiver. For identifying differ-

ent error sources, two measurement scenarios are depicted: one

where the transmitter is static, and one where it simulates a

pedestrian (Fig. 1). These scenarios help identify five distinct

types of TDoA measurement errors that will be presented in

the next section.

III. MEASUREMENT ERRORS

The static scenario is studied first. The difference between

good and bad channels, depending on the distance as well as

the buidings around the sensors, can be seen in the spectra in

Fig. 3. Sensor 1 is only 86 m away and is receiving a strong

and direct path from the transmitter. Sensor 2 is far and is

covered by a complete building and sensor 6 is further and is

surrounded by many buildings. The sensors also receive other

signals at about -2 MHz, which in that case are private mobile

radio signals.
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Fig. 3. Received Spectra of Signals
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Fig. 4. TDoA Error type 1

For a first look at the system errors, the TDoA output

after the correlation, peak detection and interpolation block

(Fig. 2) is compared to the true delay. The estimation error at

measurement n using sensor i and sensor 1 (reference sensor)

is calculated by:

e(n) = c · (τ̂i,1 − τi,1) (1)

where τi,1 is the true delay, τ̂i,j is the estimated delay and c

is the speed of light. The observation time for each correlation

is 1 ms and the update rate is 0.1 s. Figure 4 shows the errors

of the TDoA estimates over 50 measurements (5 seconds).

A. Error source 1: Insufficient SNR

The first error that can be seen in Fig. 4 is a large, random

error at two sensors (τ2,1, τ6,1) marked with (�) and (△). The

error shows that those TDoA estimates are random. This can

be explained by looking at the cross-correlation in Fig. 5. It

is obvious that the received signal has either too low SNR



Fig. 5. Cross-correlation with a signal with too low SNR
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Fig. 6. TDoA Error type 2, 3 and 4

or is not the transmitted signal. The cross-correlation shows

the absence of a clear correlation peak which results in this

error. Detecting the error can be easily done by measuring the

peak of the normalized cross-correlation. Looking at larger

observation windows of the signals can sometimes lead to a

clear peak. In this case, this did not help. Later, the results

will show how TDoA estimates with no clear correlation peak

should not be used for further calculation of the position. For

observing the other errors, TDoA estimates of sensors 2 and

6 have been removed in Fig. 6.

B. Measurement noise

Depending mainly on SNR and observation time, estimated

time delays vary around a specific value. This error can be

observed by looking at the variation of the estimates over time

(Fig. 6, Error type 2). It can be compensated by either looking

at longer observation windows or averaging over a number

of estimates. Here, the errors have the standard deviations of

σ3,1 = 12 m, σ4,1 = 7 m and σ5,1 = 7 m.

C. Synchronization errors

Bias due to GPS time error: Time synchronization among

the sensors is done using GPS. The used hardware gives a

specific accuracy (here: 1PPS-accuracy of 15 ns). In the worst

case, synchronization errors of two sensors will add up in

the correlation operation. This error can be seen in the error

average in Fig. 6 (Error type 3), here the errors are 13 m and

6.5 m.

D. Non-Line-of-Sight propagation

Bias due to NLOS: Non-line-of-sight is by far the biggest

challenge for TDoA. This error makes the correlation peak

appear at a false time delay and leads to biased estimates.

Here, NLOS can be seen in the average of τ3,1 (Fig. 6, Error

type 4). Its value is around 65 m. Detecting this error is a tough

task that was discussed in a number of papers [8], [7]. Many

methods try to identify NLOS-sensors by assuming a higher

measurement noise of these sensors [7]. The detected NLOS

sensors can either be eliminated or weighted according to their

reliability. An alternative method would be to define subsets of

the sensors, calculate a position estimate as well as a residual

for each subset, and weight the position estimates accordingly

[8]. This method needs subsets of at least 4 sensors to be able

to calulate their residuals [10].

E. Multipath propagation

Bias due to multipath: In dense multipath scenarios, mul-

tiple correlation peaks resulting from the sum of delayed

versions of the signal can overlap. This happens mainly with

narrow band signals that have broader correlation peaks in

time. The overlapping of two peaks leads to new constella-

tions, with broader peaks at wrong delays. This error can be

detected by observing the peak width of the autocorrelations

of the received signals. Here, we depicted a scenario where

sensor 3 had a dense multipath channel. Fig. 7 shows the au-

tocorrelation of the received signals of sensor 1 and 3. Sensor

1 shows the expected shape of the autocorrelation, considering

the signal bandwidth and the lowpass filter response. Sensor

3, on the other hand, shows two signal paths received within a

short time. Fig. 8 shows the cross-correlation of the two signals

of sensor 1 and 3. The two paths add up in the correlation and

result in a wider peak with a maximum not at the true time

delay. This error can be detected by looking at the peak widths.

To estimate the true time delay in such cases, other methods,

based on eigenvalue decomposition or maximum likelihood

estimation have to be employed.

F. Summary of errors

The analyzed errors are different in their sources as well

as in their effects on the estimation. Each of the observed

errors needs to be handled differently. Too low SNR re-

sults in random estimates that can not be used for position

estimation. The estimates have to be eliminated. Additive

noise is the usual expected error and is the basic model

for positioning algorithms [6], [5]. It can be additionally

compensated by observing longer windows or by averaging

over many TDoA estimates before undergoing the localization

algorithm. Synchronization errors due to the chosen hardware

accuracy can not be compensated without further information,

but they can be considered in the system uncertainties. The
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Fig. 7. Autocorrelation of two signals: a signal with one direct path and one
with multipath propagation
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Fig. 8. Cross-correlation of signals with multipath propagation

NLOS error can be mitigated either by eliminating NLOS

sensors after identifying them or by weighting different sensor

subsets according to their reliability. Multipath propagation

can also lead to biased estimates, even with line-of-sight to

the transmitter. In multipath scenarios, a different estimation

method, for example super resolution methods or maximum

likelihood based algorithms offer a good solution.

IV. ALGORITHMS AND POSITIONING RESULTS

For estimating the position of the transmitter, the Extended

Kalman Filter (EKF) was used for both scenarios [11]. The

basic equations for the system model are:

xk+1 = Axk + wk (2)

zk = Gxk + vk (3)

whereas xk+1 is the state of the system and stands for

the position of the transmitter, A is the transition matrix of

the state and w is the system noise, zk is the observation

and stands for the estimated TDoAs, G is the observation

matrix that is obtained by linearizing the observation equation

and vk is the observation noise. In the static case, the first

equation reduces to xk+1 = xk so that only the observation
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Fig. 9. EKF estimates for the static scenario

noise is modeled and minimized. In the dynamic case, both

the movement and the observation noise are modeled.

A. Stationary Scenario

For chosing a reference sensor, the width of the autocorre-

lation peak as well as the maximum values of the normalized

cross-correlations were measured and the sensor with the

highest and the narrowest peaks was chosen as reference

sensor.

Fig. 9 shows the position estimates in the stationary sce-

nario. Fig. 10 shows the position error over the filter steps.

Three different sets of sensors were chosen. Set 1 includes the

3 TDoA estimates that were not random (τ3,1, τ4,1, τ5,1). The

filter converges fast to a certain position. The remaining bias

(25 m) is a result of sensor 3 having NLOS. The algorithms

for NLOS error mitigation both did not work in that case.

For the algorithm given in [7], the assumption about higher

measurement noise at NLOS sensors was not met here as

sensor 3 (τ3,1) produced relatively stable TDoA estimates

(see Fig. 6). For the algorithm given in [8], there were not

enough LOS subsets to be able to mitigate the error [10].

Both algorithms led to the same or worse results.

Set 2 contains all sensors, including the two sensors that

produce random TDoA estimates. The Kalman Filter results

show that, eventually, the filter converges to the same position

estimate as in set 1. The only difference is that the filter needs

more steps to converge. In the end, the filter practically uses

only the same three TDoAs as in set 1. This result shows how

the EKF mitigates measurement noise and how it can produce

robust results even with high erroneous TDoAs.

Set 3 includes only LOS sensors. The result shows that the

filter converges to the true position whenever the assumption

about additive zero mean noise is met, as the NLOS error is

not in the calculation anymore.

B. Moving Scenario

For the moving scenario, a track of 100 seconds, where

the transmitter simulated a pedestrian, was chosen. Signals

that did not produce a clear correlation peak were eliminated

from calculation. Again, a reference sensor was chosen using
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Fig. 10. EKF estimation error for the stationary scenario

the width and the height of the correlation peaks. Here,

this procedure was repeated every 5 seconds as the channel

conditions are changing.

In this scenario, two time delay estimation methods were

used. A simple cross-correlation and interpolation and one

maximum likelihood (ML)-based method. The TDoAs es-

timated by using the cross-correlation method resulted in

biased estimates, because the different delayed paths were not

resolvable anymore (see Fig. 8).

The ML-based method that was used here was presented

in [4] and [12]. Here, we give a short description of the

implemented algorithm.

The model of the discrete received signal in multipath can

be expressed as:

ri(n) =

Pi∑

l=1

αl,i · s(n− τl,i) + wi(n) (4)

where n = 0, ...,K − 1 are the indices of the observed

samples, i = 1, ..., N are the different sensor indices, Pi is

number of paths for sensor i, αi is the complex factor in each

of the multipaths, τi is the delay of each path, and wi is a

noise term.

There are two assumptions behind the used method:

• The number of received paths Pi is known.

• The reference sensor has one path, line-of-sight, to the

transmitter P1 = 1. The TDoAs for the different paths in

each sensor are ∆τl,i = τl,i − τ1,1.

Based on these assumptions, the received signals rk, k =
2, ..., N can be mathematically described as a function of the

received reference signal r1.

rk(n) =

P∑

l=1

αl,k

α1

· r1(n−∆τl,k) + w̃(n) (5)

The term w̃(n) stands for the sum of different noise terms.

For each sensor k, the ML solution for the TDoA is the vector

that minimizes the noise term. The search for the vector that

maximizes the likelihood equation was done here by using two

principal ideas:
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Fig. 11. EKF-estimates for the stationary scenario
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Fig. 12. EKF estimation error for the moving scenario

• Pincus’ theorm for global maximization [13] to guarantee

convergence of the maximum search.

• The importance sampling method as a non iterative

technique to calculate the maximum likelihood solution

without using a complex multidimensional grid search.

The basic idea of the algorithm can be summed up by the

following steps:

• Define a 1-d quasi probability distribution function (pdf)

that can be used as a similar pdf for the system. Here,

the cross-correlation is used.

• Generate a ∆τ vector from the pseudo pdf. Repeat R

times to obtain R samples of the vector.

• Weight each of the sampled vectors according to the

likelihood function.

• Obtain the final estimate by calculating the circular mean

of the weighted samples.

For a more detailed description of the algorithm refer to the

original papers.

The results in Fig. 11 show the estimated track and the

true one. The results using the described ML-method are

more accurate than those of the correlation based method. The

correlation method leads to a root mean square error of 25m

whereas the ML-method leads to a root mean square error of

20m.
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C. System requirements

This section presented the localization results considering

different aspects of the TDoA errors. A TDoA system that is

required for a wide range of applications should be smart. It

should be able to identify errors and take action accordingly.

In the case of too low SNR, the error can be identified by mea-

suring the normalized cross-correlation maximum. If it goes

below a certain threshold, an estimate is labeled as random

and the according TDoAs should be eliminated. In case of

multipath propagation, the error can be detected by measuring

the width of the autocorrelation of the signal. To compensate

this error, the mentioned maximum likelihood based algorithm

can be applied. For the ML method, defining a good reference

sensor is very important to meet the signal model. Last but

not least, the biggest challenge and the source of large errors

can be undetectable non-line-of-sight. The measured scenario

showed a case where the implemented algorithms could not

mitigate the NLOS error. Fig. 13 shows the general structure of

the required intelligent system. Received and filtered signals

s1, s2, ...sN should first be tested by calculating the widths

(w) of their autocorrelation (AC) as well as the maxima (m)

of their cross-correlations (CC). These two features help us

first chose the reference sensor. After chosing the reference

sensor, only N−1 cross-correlations are needed. Their maxima

can be compared to thresholds to identify unwanted estimates.

Additionally, the maxima and the widths are compared to

thresholds to differentiate between multipath and single path

scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, the five most important challenges facing

passive TDoA systems were presented and analyzed using

measured data. The results showed that the TDoA system

needs to have the intelligence to identify error sources and

cope with them accordingly. The suggested methods, mainly

based on the peaks of the autocorrelation and cross-correlation

of the signals offer a good approach. The biggest remaining

challenge is still non-line-of-sight propagation. The imple-

mented methods failed to detect the error here and it only

worked with the a-priori information about the sensor. In

future work, the algorithm for the intelligent TDoA system

is presented in detail. Other approaches for detecting and

mitigating NLOS sensors are also analyzed.
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