

Convergence of Mobile Communications and Broadcasting: A long term perspective

J. Elsner, N. Grove, D. Burgkhardt, F. Jondral, A. Picot INFRADAY 2009, Berlin, 10.10.2009

Convergence of Mobile Communications and Broadcasting

Introduction

Terrestrial Broadcasting Infrastructure in Germany

Mobile Communications Infrastructure in Germany

Convergence: A long term perspective

Unified Infrastructure: Benefits and Regulatory Issues

Convergence of Mobile Communications and Broadcasting

Introduction

Terrestrial Broadcasting Infrastructure in Germany

Mobile Communications Infrastructure in Germany

Convergence: A long term perspective

Unified Infrastructure: Benefits and Regulatory Issues

Convergence Broadcasting / Communications

Introduction and Research Targets

Current Situation

- Broadcasting and communication infrastructure exist in parallel
- Increasing cooperation between MNOs due to high infrastructure costs
- Increasing demand for mobile Internet
- Low market penetration of terrestrial television broadcasting
- Spectrum is an economic good, to be used efficiently
- Basic law (*Grundgesetz*) gives broadcasting special role, separate from telecommunications
- Federalist structure of broadcasting in Germany

Regulatory Challenges in Germany

Aspects of Convergence

- Efficient use of spectrum: Potential benefits of a unified broadcasting and mobile communications infrastructure
- 2 Regulatory challenges

Spectrum regulation

Use of spectrum is regulated due to its shared medium characteristics

Technological Regulation

Parameters

- Transmit power
- Frequency ranges
- Standard

Spectrum assignment

- Duration > 10 years
- Explicit assignment of frequency ranges

Goal of technological regulation

- Minimizing interference
- Efficient use of spectrum

Regulatory Measures

- Individual assignment or general authorization
- Regulation leads to spectrum scarcity and creates the economic good "spectrum"

Example: Current assignment of frequencies between 790 MHz and 862 MHz ("Digital Dividend")

Source: Bundesnetzagentur, Frequenzbereichszuweisungsplan (2008), TKG

Convergence of Mobile Communications and Broadcasting

Introduction

Terrestrial Broadcasting Infrastructure in Germany

Mobile Communications Infrastructure in Germany

Convergence: A long term perspective

Unified Infrastructure: Benefits and Regulatory Issues

Terrestrial Broadcasting in Germany

DVB-T / Terrestrial television is major spectrum user

Terrestrial broadcasting

- Audio and television broadcasting
- Broadcasting services offered in the
 - VHF (30 MHz 300 MHz) and
 - UHF (300 MHz 3000 MHz) bands
- Spectrum is shared with secondary users

DVB-T

- 512 broadcasting stations cover 90% of Germany outdoors, 30% indoors/mobile
- Transmitters are high power, 50 kW mean
 - Coverage area: several dozen kilometers radius
- Modulation OFDM-based, allows for single frequency networks (SFNs)
- Data rate per TV channel: 3,5 MBit/s

Spectrum allocation

- Spectrum allocation to broadcasting: 427 MHz
- FM: Analog audio broadcasting (5%)
- DAB: Digital audio broadcasting (3 %)
- DVB-T: Digital television broadcasting (92%)

Source: Task Force DVB-T (2009), Bundesnetzagentur, Frequenzbereichszuweisungsplan (2008)

Convergence of Mobile Communications and Broadcasting

Introduction

Terrestrial Broadcasting Infrastructure in Germany

Mobile Communications Infrastructure in Germany

Convergence: A long term perspective

Unified Infrastructure: Benefits and Regulatory Issues

Mobile Communications Infrastructure 1/2

In Germany: Four MNOs and 3 mobile standards

Mobile communications

- Voice and data services offered
- GSM and UMTS operate in
 - Lower UHF (880 MHz 960 MHz)
 - Higher UHF (1800 MHz, 2000 MHz)
- Spectrum is assigned exclusively to operators

Spectrum allocation

- In total 407 MHz assigned to MNOs (including Digital Dividend frequencies)
- Uneven distribution among operators (auction/assignment outcome)
- No possibility to trade spectrum

Source: Bundesnetzagentur, Frequenzbereichszuweisungsplan (2008)

Mobile Communications Infrastructure 2/2

In Germany: Four MNOs and 3 mobile standards

Parallel Infrastructures

- Parallel Voice and Data networks
 - GSM with 473 kBit/s
 - UMTS with 384 7.2 Mbit/s
- Parallel Infrastructures by 4 operators

Next Step: LTE

- LTE with 20 100 Mbit/s
- Hence, LTE will be the first standard with high enough data rates to allow video streaming comparable to DVB-T
- New infrastructure (investments) required by each of the operators

Convergence of Mobile Communications and Broadcasting

Introduction

Terrestrial Broadcasting Infrastructure in Germany

Mobile Communications Infrastructure in Germany

Convergence: A long term perspective

Unified Infrastructure: Benefits and Regulatory Issues

Cost Reasons: Mobile Communications

High infrastructure costs force MNOs to cooperate

Cost Impacts

Spectrum Use

- "Efficient use of spectrum" required by law (TKG §52)
- Fixed assignment to operators

Infrastructure Sharing

- Outsourcing of network operation (e.g. E-Plus → Alcatel Lucent)
- Joint frequency use not allowed in DE
- Joint Planning for LTE started (discussion by Swiss regulator)

Spectrum / Resource Trading

Joint frequency use on joint infrastructure in the future?

Network Efficiency

Regulatory Reasons: Spectral Area Efficiency

Spectrum is more efficiently used in small cells with low power transmitters

Efficient use of spectrum

- "Efficient use of spectrum" required by law (TKG §52)
- Efficiency not clearly defined
- Technological efficiency can be measured in spectral area efficiency

EM wave propagation: High attenuation

- Signal strength decays fast from transmitter (inverse power law)
- Assume received power at coverage cell edge P_C
- α = 2..5, for broadcasting α = 4

Lower power, higher efficiency

- For α = 4 the power to cover the same area is reduced by a factor of n; data rate is increased by factor of n
- Gain is reduced due to frequency planning, but general relationship holds

$$P_C \propto \frac{1}{r_0^{\alpha}} P_0$$

$$P_C \propto \frac{1}{r_0^{\alpha}} P_0$$

$$P_n = n^{-\frac{1}{r_0^{\alpha}} + 1} P_0 \cdot P_0$$

Regulatory Reasons: Efficient Spectrum Allocation

A very long term perspective: Unified Infrastructure can support Online Spectrum Auctions

Online Spectrum Auctions

- Model: Several service providers (former MNOs) share unified infrastructure
- MNOs facing high traffic demand may bid for additional channels/spectrum, low demand operators may offer parts of allocated channels/spectrum
- Double auctions similar to stock exchange within a trading period
- Prerequisite: Goods need to be interchangeable: equivalent cell coverage
 - Unified infrastructure provides for this

Hierarchical Spectrum Trading

Source: Burgkhardt (2009), Yamada (2008), Cave (2006)

Regulatory Reasons: User Preferences

Rising mobile data demand, low market penetration of DVB-T

Convergence of Mobile Communications and Broadcasting

Introduction

Terrestrial Broadcasting Infrastructure in Germany

Mobile Communications Infrastructure in Germany

Convergence: A long term perspective

Unified Infrastructure: Benefits and Regulatory Issues

Unified Infrastructure – Benefits and Challenges

Do technological advantages outweigh regulatory challenges? Future research.

Unified joint

Infrastructure

Technological Advantages

- Cost savings due to removal of redundant infrastructure
- Higher spectral area efficiency
- More effective MNO frequency planning and better capacity / area coverage
- Simplified international frequency planning due to lower power
- Long run: free, real-time formation of spectrum prices via auctions

• Infrastructure competition eliminated?

Regulatory Concerns

- Competition on a single network, comparable to wired services?
- Special role of broadcasting in German law – need to restructure Landesmedienanstalten and redefine basic coverage (Grundversorgung)?

Q&A / Discussion

Acknowledgement / Disclaimer

Friedrich Jondral's and Jens Elsner's contribution to this work was supported by the Federal Ministry of Economics and Technology (BMWi) under project number 38/08: Effiziente Frequenznutzung im TK-Review. The views expressed are those of the authors and do not necessarily represent those of the BMWi or BMWi policy.

Thank you for your attention!

